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Abstract Spatial climate models were developed for México and its periphery
(southern USA, Cuba, Belize and Guatemala) for monthly normals (1961–1990)
of average, maximum and minimum temperature and precipitation using thin plate
smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of
the model was generally good: the signal was considerably less than one-half of
the number of observations, and reasonable standard errors for the surfaces would
be less than 1◦C for temperature and 10–15% for precipitation. Monthly normals
were updated for three time periods according to three General Circulation Models
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and three emission scenarios. On average, mean annual temperature would increase
1.5◦C by year 2030, 2.3◦C by year 2060 and 3.7◦C by year 2090; annual precipitation
would decrease −6.7% by year 2030, −9.0% by year 2060 and −18.2% by year
2090. By converting monthly means into a series of variables relevant to biology
(e. g., degree-days > 5◦C, aridity index), the models are directly suited for inferring
plant–climate relationships and, therefore, in assessing impact of and developing
programs for accommodating global warming. Programs are outlined for (a) assisting
migration of four commercially important species of pine distributed in altitudinal
sequence in Michoacán State (b) developing conservation programs in the floristi-
cally diverse Tehuacán Valley, and (c) perpetuating Pinus chiapensis, a threatened
endemic. Climate surfaces, point or gridded climatic estimates and maps are available
at http://forest.moscowfsl.wsu.edu/climate/.

1 Introduction

Biogeographers generally view climate as the primary factor controlling the dis-
tribution of plants (Brown and Gibson 1983; Tukanen 1980; Woodward 1987).
Consequently, understanding plant–climate relationships is essential for designing
comprehensive programs for the management and conservation of plant species,
even without considering a change in climate. Comprehensive programs, however,
require climate models, particularly for countries like México which have a large
diversity of vegetation types (Rzedowski 1993) and high biodiversity (or megabio-
diversity) (Mittermeier 1988; Ramamoorthy et al. 1993), particularly in forest trees
such as the pines (Styles 1993), oaks (Nixon 1993) and legumes (Ricker et al. 2007).

Climate-change is expected to have negative impacts on food production, bio-
diversity, and conservation efforts, particularly in developing countries with tropic
and subtropical climates that are expected to become more arid (Beg et al. 2002;
Steffen 2008). Entire ecosystems will be decoupled of the climates that occur at
their present distribution, and numerous tree species and populations will face
extirpation unless they adapt or migrate (Rehfeldt et al. 1999, 2001, 2006; Hughes
2000; Tchebakova et al. 2005; Hamann and Wang 2006; Wang et al. 2006; Aitken et al.
2008). Expectations from climate-change in México include a substantial reduction of
the present distribution of oaks and pines (Gomez-Mendoza and Arriaga 2007), and
a shift or a decrease of the habitat distribution of several endemic and endangered
species, both plants (Téllez-Valdés and Dávila-Aranda 2003; Téllez-Valdés et al.
2006) and wild animals (Peterson et al. 2002).

Developing strategies and programs for the management and conservation of
genetic resources in forestry and agriculture for mitigating impacts of ongoing
climatic change, such as selection of new crop varieties more resistant to drought
stress (Pachauri 2004), redesign boundaries of existing natural protected areas for
biological conservation (Téllez-Valdés and Dávila-Aranda 2003), assisted migration
of plant populations northwards or to higher elevations (Hughes 2000; Tchebakova
et al. 2005; Aitken et al. 2008), and increases in the genetic diversity of tree planta-
tions to facilitate adaptative responses to climatic change (Ledig and Kitzmiller 1992;
St Clair and Howe 2007), in a large extent are dependent on having future climate
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estimates (see Tchebakova et al. 2005). The traditional guidelines for the matching of
genotypes to the climates for which they are adapted require adjustment to account
for the fact that climate in any given geographical area will not be the same as in the
near future (Hughes 2000; Rehfeldt et al. 2006; Sáenz-Romero et al. 2006; Gomez-
Mendoza and Arriaga 2007; St Clair and Howe 2007; Aitken et al. 2008).

Developing a realistic climate model is challenging for countries like México
where (1) physiography is complex, (2) weather stations are mainly distributed near
agricultural areas, and (3) the stations are relatively poorly represented on the high
mountains and remote areas where forest resources predominate, despite ongoing
high rates of deforestation (see Sáenz-Romero et al. 2003). In this paper, we develop
a climate model using thin plate smoothing splines, a relatively recent developed
tool (Bates and Wahba 1982; Wahba 1985; Kohn et al. 1991) shown to have useful
applications in the construction of climate models (Hutchinson 1993, 1995, 1998a, b;
Hutchinson and Gessler 1994; Price et al. 2000). The splines can be viewed as an ex-
tension of multivariate regression, where the parametric regression model is replaced
by a smooth non-parametric function and the splines fit a dependence on elevation
(Hutchinson 2004). This technique, when applied to climate data from geographically
complex regions, has proven to be superior to other extrapolation techniques like
inverse distance weighted averaging (IDWA) or co-kriging (Hartkamp et al. 1999;
Boer et al. 2001).

The ANUSPLIN software of Hutchinson (2004) has made the splining tech-
niques readily accessible for climate modeling. For example, McKenney et al.
(2001) have revised Canada’s plant hardiness zones using Hutchinson’s software.
Rehfeldt (2006) has fit splines for the geographically complex western USA, and
this work has recently been extended to all of western North America (see URL:
http://forest.moscowfsl.wsu.edu/climate/). Although México is covered in a world-
wide analysis (Hijmans et al. 2005), our analyses use an intensive distribution of
samples for which an emphasis is placed on obtaining data for remote locations
ordinarily not represented in largely agronomic databases, to provide point estimates
of climate rather than gridded estimates. Other spline models for México tend to be
regional: for Jalisco state, western México (Hartkamp et al. 1999; Boer et al. 2001),
the Biosphere reserve of the Tehuacán Valley which lies at the border between
the states of Puebla and Oaxaca (Téllez-Valdés and Dávila-Aranda 2003), and for
habitats of Fagus mexicana (Téllez-Valdés et al. 2006).

Our contemporary spline climate model for México is based on an intensive
sample of data from approximately 4,000 weather stations while projections use
station data updated according to output of several General Circulation Models and
emission scenarios for decades centered in the years 2030, 2060 and 2090. While
the model is primarily for México, the geographic extent of the model includes
southern USA (below the parallel 33◦ N), Belize, Guatemala and Cuba, and by
extrapolation the Bahamas, Jamaica, and north of Honduras. Application of the
model in programs designed to accommodate potential impacts of global warming
is illustrated for genetic studies of Mexican pines in the western state of Michoacán,
for the prediction of contemporary and future distribution of an endangered Mexican
pine (Pinus chiapensis), and for studies of the potential impacts of climatic change in
a region with highly contrasting climate (the Tehuacán Valley and its neighboring
slopes of Sierra Madre Oriental).

http://forest.moscowfsl.wsu.edu/climate/
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2 Methods

2.1 Spline surfaces for contemporary climates

We constructed a spline climate model using monthly averages of total precipitation,
average temperature, maximum average temperature and minimum average tem-
perature normalized for 1961–1990 period that we designated as the contemporary
climate. The original raw data base consisted of more than 6,000 weather stations
geographically limited in the North at 33◦ N latitude, in the South at 13◦ 54′ N
latitude, in the West at 117◦ W longitude, and at the East at 74◦ W longitude
(Fig. 1). USA data were obtained from the weather service (U. S. Department of
Commerce 1994) and EarthInfo Inc. (1994); México data from Mexican Weather
Service (personal request to Mexican Servicio Metereológico Nacional, México City)
and Guatemala, Belize and Cuba from U.S. Department of Commerce (2008).

In assembling a dataset for analysis, we first constructed a list of standard stations,
those with at least 20 years of observations in our 30-year period of normalization,
ca. 2,600 stations of which 1,700 were Mexican. However, the distribution of standard
stations tended to be skewed toward agricultural regions, particularly in México
(Fig. 1b). To provide data points from remote areas, we assembled a list of candidate
stations defined as those having at least 7 years of records for precipitation and
5 years for temperature variables. From this list, we eliminated the observations
within 20 km and 50 m elevation of a standard station and those within the same
distance of another candidate station with more years of observations. The remaining
candidate stations totaled ca. 1,600 (Fig. 1b). This meant that the total number
of stations supplying data was ca. 4,200, but all variables for all months were not
necessarily available from each.

Data from the candidate stations were then adjusted to the period of normal-
ization (1961–1990) by calculating and averaging monthly deviations for years in
common between a candidate station and the four geographically proximal standard
stations. The deviations were then used to estimate monthly normals for the candi-
date station from the mean of the four normals of the standard stations (see Rehfeldt
2006). To avoid the tacit assumption that deviations calculated in this manner were
constant for all elevations, we used a set of rules that were applied sequentially until
four stations were obtained: chose the closest stations from (1) within 100 km and
300 m elevation, (2) within 100 km and 600 m elevation, (3) within 300 km and
300 m elevation, and (4) within 300 km and 600 m elevation. Absolute values of
the deviations were used for the calculation of temperature normals but ratios were
used for precipitation.

As a result, our analyses are based on normalized monthly data from 3,971
stations for precipitation (Fig. 1b) and about 3,700 for the temperature variables.
Approximately 78% of the stations were from México and about 20% from USA.
There were 12 stations from Cuba, five from Guatemala, and four from Belize.

Thin plate splines were fit to normalized monthly means with the software
ANUSPLIN v 4.3 (Hutchinson 2004) which fit smoothing parameters to the x-, y-,
z-coordinates of geographic space. First, knots were generated using the SELNOT
program. Output from the knots program was used for generating surfaces with
the SPLINB option. We followed the recommendations of Hutchinson in using the
output from the spline program to eliminate or add stations to the knots file. After
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Fig. 1 Political divisions and prominent geographical regions of México referenced in text (a)
and location of weather stations (standard = red square, normalized = blue triangle) used for the
spline surfaces (b)

three iterations, the final surfaces were produced using 1,921 knots for precipitation
and 1,703 for the temperature variables. The SPLINB program also accumulates in
a ‘bad data flag file’ containing those monthly observations that lie more than 3.6
standard deviations off the surface. In the final model, these observations were not
used to produce the climate surfaces. We fitted second order splines using latitude,
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longitude, and elevation as independent variables. Precipitation analyses used the
square root transformation.

The statistical fit of the surfaces was assessed from three diagnostic statistics: the
signal, root mean square error (RTMSE), and root of the generalized cross validation
statistic (RTGCV). The signal is indicative of the degrees of freedom associated with
the surface, which in a well fitting model should be no more than one-half of the
number of observations; RTMSE is a measure of the standard error of surface values
after the data error has been removed; and RTGCV is a spatially averaged standard
error that reflects errors of prediction (Hutchinson 2004).

After fitting the splines, we explored their ability to provide reasonable estima-
tions of temperature lapse rates using mean annual temperature for demonstration.
Predicted temperatures were obtained for an altitudinal transect at 13 geographic
locations. The locations represented the climatic diversity of México: moist and
warm low lands with coastal Gulf of México influence (Tuxtepec, Oaxaca and Rio
Blanco, Veracruz) and with coastal Pacific influence (Concordia, Sinaloa; Aquila,
Michoacán); cold, high interior plateau (Toluca, Estado de México; Topilejo, Distrito
Federal); cold, dry interior lands (Durango, Durango); very cold high mountains
(El Salto, Durango); dry, warm interior lands (Oaxaca City and Tehuacán Valley,
Oaxaca; Balsas Depression, Michoacán); dry, high inland plateau (Zacatepec,
Puebla), and peninsular dry with Pacific influence (Santa Martha Mulege, Baja
California). Transects were about 50 km in length, and consisted of 10–15 data points
for which altitudes were obtained from GLOBE Task Team (1999). Altitudinal
range of the transects was at least 1,500 m. Estimated mean annual temperatures
by location were regressed on altitude using PROC REG of SAS (SAS Institute
Inc. 1998).

Monthly estimates from the spline surfaces were converted into 19 variables
of relevance to plants (see Tukanen 1980; Rehfeldt et al. 2006) according to the
algorithms of Rehfeldt (2006). The variables were: mean annual temperature (MAT,
degree Celsius), mean annual precipitation (MAP, mm), total precipitation in the
growing season (April to September, GSP, millimeters), degree-days above 5◦C
(DD5), negative degree-days calculated from average temperature (DD0) or min-
imum temperature (MINDD0), mean temperature in the coldest month (MTCM,
degree Celsius), mean minimum temperature in the coldest month (MMIN, degree
Celsius), mean temperature in the warmest month (MTWM, degree Celsius), mean
maximum temperature in the warmest month (MMAX, degree Celsius), Julian
date of last spring frost (SDAY), Julian day of first fall frost (FDAY), length
of frost-free season (FFP, days), degree-days above 5◦C in the frost-free season
(GSDD5), and Julian day on which DD5 sums to 100 (D100). Derived variables
also included interactions among these variables such as the proportion of the total
precipitation that falls during the summer (GSP/MAP), an annual aridity index
(AAI = DD50.5/MAP), growing season aridity index (GSAI = GSDD50.5/GSP) and
summer–winter temperature differential (TDIFF = MTWM − MTCM).

To illustrate the climate diversity of México as described by our surfaces, we
estimated monthly average, minimum and maximum temperatures and precipitation
for each cell of a digitized elevation model (GLOBE Task Team 1999) gridded at
0.5 min (0.008333◦ or approximately 1 km2). For the study area, the total number
of terrestrial cells was 4,630,997. The grids were then mapped with Geographical
Information System software (Minami 2000).
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2.2 Future climates and their surfaces

To estimate the future climates for the decades centered about years 2030, 2060
and 2090, we updated the monthly normals of precipitation, minimum, maximum
and average temperatures of all weather stations with outputs from the following
General Circulation Models (GCMs) and scenarios: (a) Canadian Center for Climate
Modelling and Analysis (CCC), using the CGCM3 (T63 resolution) model, SRES
A2 and B1 scenarios; (2) Met Office, Hadley Centre (HAD), using the HadCM3
model, SRES A2 and B2 scenarios; and (3) Geophysical Fluid Dynamics Laboratory
(GFD), using the CM2.1 model, SRES A2 and B1 scenarios. Data, their descriptions,
and explanation of the scenarios are available at the International Panel on Climate
Change Data Distribution Center (URL: http://www.ipcc-data.org/). Weather sta-
tion records were updated by using a weighted average of the monthly change in
climate calculated for the GCM cell centers lying within 400 km of a station. The
inverse of the square of the distance from the station to the cell center was used for
weighting.

Of these emission scenarios, the A2 assumes high continued emissions from a
continuously increasing population growth, with economic growth and technological
change very heterogeneous among different regions and countries of the world;
scenario B1 assumes a gradual reduction in emissions as rapid changes in economic
structures are made toward a reduction in material intensity and introduction of
clean technologies; scenario B2 assumes a continuous increasing population but at
rate lower than scenario A2, intermediate levels of economic development and less
rapid and more diverse technology change than B1 and A1. Scenario A1B assumes
emissions intermediate between the A and B with a balanced fossil-intensive and
non-fossil energy source in a world of very rapid economic growth as well as a rapid
introduction of more efficient technologies (see URL: http://www.ipcc-data.org/;
IPCC 2000).

The splines were then refit for each time period to produce monthly surfaces
for the four climate variables for each scenario of all GCMs. Derived variables
were then calculated as described above. Rather than updating grid cells of a fine
resolution from the relatively coarse grids of the GCMs, our approach to downscaling
begins anew the construction of spline surfaces from updated weather records. Either
approach, however, tacitly assumes a constant relationship between elevation and
the change in climate. Although this assumption is likely to be false, there are at
present no reasonable alternatives. Our projections, therefore, are based on the
differences in climate between that of a weather station and that of an average
elevation of a GCM grid cell. Bias would occur if these differences were dependent
on the elevation of the weather station.

For this paper, we illustrate projected changes in climate by mapping predictions
for the A2 scenario of CCC for the decade centered in 2090. Other projections are
available at http://forest.moscowfsl.wsu.edu/climate/.

2.3 Toward understanding plant–climate relationships

To illustrate the utility of the climate surfaces in biology, we consider (1) potential
impacts of global warming on migration pattern of Mexican vegetation, (2) climatic
niche analyses of a narrow endemic, Pinus chiapensis, (3) assisted migration in the

http://www.ipcc-data.org/
http://www.ipcc-data.org/
http://forest.moscowfsl.wsu.edu/climate/
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botanical unique Tehuacán Valley as a management strategy for accommodating
a changing climate, and (4) projection into future climate space the genetic differ-
ences occurring among populations within four species of pine inhabiting altitudinal
transects in the Neovolcanic (also known as Transvolcanic) Axis (Fig. 1). For the
latter analyses, genetic responses of populations separated by 100 m of elevation
have been studied previously for Pinus oocarpa populations from 1,100 to 1,500 m
(Sáenz-Romero et al. 2006); P. devoniana (also known as P. michoacana) populations
from 1,600 to 2,400 m (Sáenz-Romero and Tapia-Olivares 2008); P. pseudostrobus
populations from 2,100 to 2,800 m (Viveros-Viveros et al. 2005); and P. hartwegii
populations from 3,000 to 3,600 m (Viveros-Viveros et al. 2009). Contemporary and
2,030 values of five derived variables, MAT, MAP, DD5, MTCM and AAI, were
estimated using the A2 scenario of CCC. From these estimates we calculate the
altitudinal distance that populations would need to be transferred if they were to
occur in a climate similar to that inhabited today. The underlying assumption is
that existing populations are genetically adapted to contemporary climates (Sáenz-
Romero et al. 2006).

To illustrate the use of the climate surfaces in climate niche analyses, we used the
Random Forest classification tree of Breiman (2001) and followed the procedures
detailed by Rehfeldt et al. (2006) to develop a statistical model to predict presence–
absence of P. chiapensis from contemporary climate variables and to project the
climate niche according to the 2060 climate of the A2 scenario of HAD. Breiman’s
algorithm develops a classification tree from two-thirds of the observations selected
randomly from a data set and uses the remaining observations to calculate error.
The program then constructs a forest from a set of trees that use a recursive
sample from the data set. For presence, we used all known locations inhabited by
P. chiapensis, taken from Dvorak et al. (1996a), Newton et al. (2002), del Castillo
and Trujillo (2008) and del Castillo et al. (2009), a total of 53. Because these
observations constituted a census, we could assume that all other sites sampled from
a digitized file of the Biotic Communities of North America (Brown et al. 1998)
would not be inhabited by the pine. Technical procedures, described in detail in
Rehfeldt et al. (2006), include devising a sampling procedure according to which
the number of observations taken from a community was determined by the size
and number of polygons representing a community in the digitized file, procuring
a systematic sample of observations from each polygon on the file, associating with
each observation an elevation from the digitized elevation model of GLOBE Task
Team (1999), and estimating the climate of each location from the spline surfaces.
These procedures produced a pool of about 56,000 observations for which the pine
was absent.

Because the Random Forests algorithm is best suited to data in which the number
of observations in classes is approximately equal (see Breiman 2001), only a small
proportion of the number of observations without the pine could be used to construct
a forest. In using the sampling protocol of Rehfeldt et al. (2006), we constructed
25 data sets, each with the 53 observations where the pine was present, weighted
twice, and about 160 climatically diverse observations lacking the pine. Each data set
was used in separate analyses to build a forest of 500 trees. This sampling protocol
assures that 80% of the observations without the pine will be among those for which
separating presence from absence is the most difficult.
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The program started with 34 climate variables (19 derived variables previously
described here plus additional interactions between them, such as DD5 × MAP) on
which an iterative stepwise process eliminated one variable at each step according to
the mean decrease in accuracy, a measure of variable importance. The process was
halted with an eight-variable, shown previously to be robust for making projections.
To make a prediction from the model, observation is run through all trees in all
forests, with each tree contributing a vote, which in our case, would be whether or
not the climate of an observation is suited for the pine. In making predictions for
each cell of the GLOBE Task Team (1999) grid and, therefore, for gridded GCM
projections, 12,500 votes were cast in each pixel. We assumed that the climate of a
pixel was suited to the pine when a majority of the votes was affirmative.

3 Results and discussion

3.1 Spline surfaces for 1961–1990 normals

The signal averaged ca. 950 for monthly temperatures and 1,400 for precipitation.
Because the signal was much less than the number of knots (ca. 1,700 for temperature
variables and 1,900 for precipitation), our choice for the number of knots is adequate
(see Hutchinson and Gessler 1994). The ratio of the signal to the total number of
observations for the average, minimum and maximum temperatures averaged ca.
0.26, and those for precipitation averaged 0.36 (Table 1). Because the signal is much
less than one-half of the number of observations, we conclude that models are a
reasonably well fitting representation of the climatic variation in Mexico. These ratios
are considerably less than those reported by McKenney et al. (2001) for Canada,
Rehfeldt (2006) for northwest USA, and Boer et al. (2001) for western México.
The signal was slightly higher in the summer months for the average and minimum
temperatures, but showed no discernable pattern for maximum temperature and
precipitation (Table 1), suggesting a greater instability in the temperature during the
summer than during winter (Hutchinson and Gessler 1994).

The square root of the generalized cross validation statistic (RTGCV, Table 1),
an conservative estimate of the predictive error (Hutchinson 2004) varied between
1.3◦C and 1.6◦C for the temperature variables and 7 mm in dry months to 34 mm
in wet months (about 22% of the mean) for precipitation. The root mean square
error (RTMSE), an optimistic estimate of the surface error, varied from 0.5◦C to
0.75◦C for the temperature variables and from 3 to 16 mm (3–10% of the mean) for
precipitation. According to Hutchinson (2004), it would be reasonable to conclude
that the standard errors for our surfaces are less than 1◦C for temperature and
10–15% for precipitation. The ratio of RTMSE to RTGCV is about 0.5, suggesting
that a substantial amount of data noise was overcome by fitting the spline model.

These surface errors are similar to those found for Canada (McKenney et al.
2001) and for western USA (Rehfeldt 2006), and seem typical of temperature and
precipitation surfaces in general (Hutchinson 2004). While Hutchinson (2004) notes
that a RTMSE value of 0.5 frequently results from fitting average temperature, the
larger errors (Table 1) for minimum and maximum temperatures probably reflects
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the high variance in temperature in mountain systems in the arid north and humid
systems in the south and east.

When expressed as a ratio to the mean, monthly RTMSE for western USA
(Rehfeldt 2006) are quite similar as for Mexico. Largest errors tend to be associated
with the wettest months, generally the winter in USA and summer in Mexico.
Precipitation is generally higher in Mexico, and, therefore, inherently more variable
during the summer monsoonal flow of moist air masses inland from the Gulf of
Mexico.

In general, the signal, RTMSE, and RTGCV describe spline models that are well
fit to the heterogeneous climates of Mexico. As discussed by Hijmans et al. (2005),
uncertainty in the surfaces is directly related to, first, the number of observations and,
second, variation in elevation. Because Mexico’s physiognomy is a complex system of
mountains and volcanoes, we addressed these sources of uncertainty by maximizing
the number of observations particularly for remote locations.

As would be required in a well fitting climate model, altitudinal lapse rates for
mean annual temperature depicted by the spline surfaces produced linear regressions
that were statistically strong (Fig. 2). Simple correlations of temperature on elevation
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Fig. 2 Plots of predicted mean annual temperature across an altitudinal gradient for 13 locations
with contrasting climates
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averaged r = −0.99 (P = 0.0001) for the 13 altitudinal transects when analyzed
separately, and −0.85 (P = 0.0001) for pooled data. As shown by the regression
coefficients, lapse rates for these diverse locations varied from 3.4◦C to 6.8◦C per
1,000 m. As shown in Fig. 2, the relationship between mean annual temperature and
elevation tends to flatten at elevations <500 m. Nonetheless, an average of 5.2◦C per
1,000 m for the 13 transects is in close agreement with adiabatic lapse rates which are
generally 5.0–5.5◦C per 1,000 m (see Rosenberg 1974).

3.2 Projected climates and their spline surfaces

Weather station records updated for GCM output show in general that mean annual
temperatures should increase steadily in Mexico, by 1.5◦C in the decade surrounding
2030, 2.3◦C in 2060, and 3.7◦C by 2090 (Fig. 3). Projections, however, increasingly
diverge among models and scenarios during the course of the century. For 2030, all
the models and scenarios were similar, with the largest difference (0.5◦C) between
model CCC scenario A2 (increase of 1.7◦C) and model GFD scenario B1 (increase
of 1.2◦C). By 2060, differences increased, with the largest difference (1.2◦C) being
between the most pessimistic scenario, A2 of HAD, which predicted a temperature
increase of 2.8◦C; the most optimistic was the B1 scenario of GFD which predicted an
increase of 1.6◦C. By year 2090, however, the differences among projections became
even more pronounced, with model HAD scenario A2 projecting an increment of
5.0◦C while GFD scenario B1 projecting 2.3◦C. The 2090 projected increases shown
in Fig. 3 are well within the range summarized for 21 global models for México and
Central America for the period 2080–2099 Christensen et al. (2007). Figure 3 also
shows that estimates for 2090 differ more between scenarios than between GCMs.

The GCMs and their scenarios unanimously project a decrease in precipitation
across the century (Fig. 4), averaging −6.7% by 2030, −9% by 2060, and −18.2%
for 2090. Variation among the GCMs and scenarios, however, was large. Projections

Fig. 3 Mean increment of
average annual temperature
(degree Celsius) in comparison
to contemporary climate
(1961–1990) from 3,700
weather stations updated by an
inverse distance weighting for
GCMs from the Canadian
Center for Climate Modeling
and Analysis (CCC, scenarios
A2, B1 and A1B), Hadley
Center (HAD, scenarios A2
and B2) and Geophysical Fluid
Dynamics Laboratory (GFD,
scenarios A2 and B1), for
decades centered in years
2030, 2060 and 2090
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Fig. 4 Mean change in annual
precipitation (percent) in
comparison to contemporary
climate (1961–1990) from
3,971 weather stations updated
by an inverse distance
weighting for GCMs from the
Canadian Center for Climate
Modeling and Analysis (CCC,
scenarios A2, B1 and A1B),
Hadley Center (HAD,
scenarios A2 and B2) and
Geophysical Fluid Dynamics
Laboratory (GFD, scenarios
A2 and B1) for decades
centered in years 2030, 2060
and 2090

2

0

2

2

0

4

-2

6

-4

8

-6

io
n

-10

-8

p
it

a
t

-12

-10

e
c

ip

-14

-12

 P
re

-16

14

e
 i

n
-18

16

a
n

g
e

-20

18
C

h
a

-22

20

%
 

CCC  A1B CCC  A2

-24

22

CCC  B1 GFD  A2

-26

24

GFD  B1 HAD  A2

-28

26

HAD  B2 Mean

-30

2020 2030 2040 2050 2060 2070 2080 2090

Year

for 2030, for instance, varied between +0.7% and −13.5%, but for 2060, three of the
projections predict increased precipitation in comparison to 2030, but with still an
overall decrease from the present (ca. −3%), while four of the projections suggest
a continued decline from 2030 to ca. −12% of the present. By 2090, all projections
predict that precipitation should decrease, by −8.9% to −28.5% of the present. These
results are similar to those of Christensen et al. (2007) who calculated reductions
ranging from −9% to −48% for México and Central America between 2080 and
2099 from 21 global models.

Differences projected for precipitation between the A and B scenarios increase
considerably in time. Although the two scenarios purport a similar reduction in
precipitation for 2030 of about −6.5%, by 2060 the reduction for the A scenario
is expected to be about −10.9% while that for the B scenario is −5.7%. By 2090,
the reduction in precipitation under the A scenario (−22%) is projected to be nearly
twice that of the B scenario (−12.2%).

In using updated weather records to develop climate surfaces for the future, we
examined 21 sets (seven model-scenarios by three time periods) of spline output
statistics such as those of Table 1. Although the monthly means changed, the signal,
RTMSE, and RTGCV remained similar. The fit of the models, therefore, was also
similar.

3.3 Mapped climate surfaces

To illustrate the tremendous climatic variability in México, we mapped predicted
mean annual temperature, mean annual precipitation, and the annual aridity index
of the contemporary period and for 2090, the latter using the A2 scenario of
CCC (Figs. 5, 6, 7). As expected, geographic patterns in mean annual temperature
reflect altitudinal differences between the mountain systems and the lowlands. In
the contemporary climate, the coolest regions (<12◦C) are concentrated along the
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Fig. 5 Mapped predictions of mean annual temperature (degree Celsius) for digitized elevations on
a 0.5 min (about 1 km) grid, for contemporary climate (a) and 2090 climate (b), using output from
the Canadian Center for Climate Modeling and Analysis model, scenario A2

mountainous Sierra Madre Occidental and the central Neovolcanic Axis (Figs. 1a
and 5a), where the highest Mexican volcanoes occur. Areas with >25◦C occur along
much of the coastal regions south of 25◦ N as well as in the Yucatán Peninsula
(Fig. 5a). Because the mean annual, maximum, and minimum temperatures and
degree days >5◦C are correlated, their geographic patterns are all similar to those
of Fig. 5a.
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Fig. 6 Mapped predictions for mean annual precipitation (millimeters), for contemporary climate
(a) and 2090 climate (b), using output from the Canadian Center for Climate Modeling and Analysis
model, scenario A2

The 2090 temperature projections show that areas with the coolest climates
(<12◦C) should largely disappear, being restricted to only the highest volcanoes
(dark blue, Fig. 5b). In addition, portions of the Veracruz coast, Tabasco, Yucatán
Peninsula, large parts of Pacific Coast and Balsas Depression (central-south of
Michoacán State and western Guerrero State) became very warm, with average
annual temperatures >29◦C (darkest red shades, Fig. 5b).
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Fig. 7 Annual aridity index (ratio of square root of degree days >5◦C to precipitation) for
contemporary climate (a) and 2090 climate (b), using output from the Canadian Center for Climate
Modeling and Analysis model, scenario A2

Highly variable contemporary precipitation (Fig. 6a) results from both altitudinal
effects and the differential impacts of arid westerly air masses from the Pacific Ocean
and moist monsoonal flows from the Gulf of México and the Caribbean Sea. In
the Mediterranean climate of Baja California in northwest México, for example,
annual precipitation may be only 200 mm, coming mostly in winter months. Yet,
3,000 mm or more may fall at localities in the tropical rain forest along Tabasco and
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Veracruz slopes, northeastern Oaxaca and northern Chiapas in southeast México.
This region is strongly influenced not only by monsoonal flows but also by occasional
hurricane landfalls which contribute to the high variability in precipitation (Table 1,
Fig. 6a). Climate-change, however, is expected to progressively reduce the amount
of area receiving more than 2,300 mm of rain (blue tones of Fig. 6b) and expand arid
and semiarid regions receiving <400 mm (brown tones) in the north and northwest
of México. Also, precipitation in much of the Yucatán Peninsula which currently
receives 800–1,400 mm (yellow tones of Fig. 6a) should drop by about 17% (Fig. 6b).

The annual aridity index (ratio of square root of degree days >5◦C to precipita-
tion) expresses an interaction of temperature with precipitation that better illustrates
the remarkable climatic variability in México than either component separately
(Fig. 7). By reflecting the amount of growing season heat received for each mm
of annual precipitation, this ratio represents the potential for moisture stresses to
develop in the vegetation. In the contemporary climate (Fig. 7a), lowest index values
are associated with the southern tropical forests, while the highest values occur in
the deserts of the north. This map is strikingly similar to vegetation maps of México
(e.g., Rzedowski 1978, 1993; Brown et al. 1998). However, according to the A2
scenario of CCC, the arid regions (brown tones of Fig. 7a) of north-central México,
encompassing the States of Chihuahua, Durango, Coahuila, should expand toward
both coasts and toward the southeast by 2090 (Fig. 7b). At the same time, the moist
regions of Veracruz, Tabasco and northern Oaxaca and Chiapas would be reduced
greatly (blue tones), and much of the Sierra Madre Occidental and the Neovolcanic
Axis would become more arid while the deserts of the northwest in Sonora and
Sinaloa expand.

The maps of Figs. 5–7 and many additional maps are available at http://forest.
moscowfsl.wsu.edu/climate/.

3.4 Applications in plant–climate relationships

3.4.1 Assessing impacts of climate-change on vegetation

Projected impacts of climate-change on the vegetation, such as those for western
Canada (Rehfeldt et al. 1999; Hamann and Wang 2006; Wang et al. 2006), western
USA (Rehfeldt et al. 2006), and Siberia (Tchebakova et al. 2005), commonly show
that the climate now inhabited by local populations, species, and ecosystems gener-
ally will shift toward the north and to higher elevations. Paleoecological evidence
alone suggests that natural systems will respond to change such that a semblance
of equilibrium is maintained between plant distributions and climate (e.g., Rehfeldt
et al. 1999, 2002; Tchebakova et al. 2005; Aitken et al. 2008). Although factors such
as soils, insects and disease also affect the distribution of plants, one can assume
that during times of change, plants seemingly will attempt to track the climate in
which they now occur, a premise that is basic to paleoecology. Based on projected
responses elsewhere, the intuitive expectation for Mexico, subject to the lag in
response expected between migration and the change in climate (see Davis 1989;
Davis et al. 2005), therefore, would be for a general migration of vegetation toward
higher elevations in a northerly direction.

Our results for Mexico, however, suggest that potential migration in Mexico
would be much more complex. Arid climates currently occupy northern México,
and projections are for these arid climates to expand in all directions (Fig. 7b).

http://forest.moscowfsl.wsu.edu/climate/
http://forest.moscowfsl.wsu.edu/climate/
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These expanding arid climates would act as a barrier to the northward migration of
species attempting to track the climate they now inhabit. For species that presently
inhabit climates of least aridity at intermediate and high altitudes, the only routes
available for a progressive northward migration would be through the Sierra Madre
Occidental and Sierra Madre Oriental. Both routes, however, are dead ends because
both mountain ranges dissipate south of the USA border. Even though mountain
islands exist in the deserts of southwest USA, the possibilities of a stepping stone path
of migration from mountain peak to mountain peak are problematic. Projections
for these mountain islands is for their vegetation to be pushed upwards and north
(Rehfeldt et al. 2006), presumably being supplanted by the vegetation of the arid
climates now at lower elevations. Stepping-stone migrations also require periods of
trial and error in the dispersion of propagules, and time is not a commodity available
in the scenarios we use. Our conclusion for Mexico’s vegetation is that the expansion
of the arid climates in the north will force plant migrations upwards and to the south,
toward the Neovolcanic Axis (Fig. 1). This would mean that possibilities for the
migration of Mexican flora into USA would be greatest during cooling trends rather
than warming trends.

An increase in aridity also should impact agriculture. Crop production most
certainly will be affected, particularly in such areas where a lack of irrigation makes
corn production in marginal areas dependent on the rainy season. Also, a decrease in
forage production for cattle consumption can be expected as well as the decrease of
5% to 30% in cereal yield that has already been forecast for México by 2080 (Parry
et al. 2004). Wild animals will suffer from increasingly poor adaptation as the climate
for which they are physiologically attuned and the vegetation within which they are
dispersed appears at novel and distant locations. It is estimated that by 2055, 40% of
fauna species will be occupying suboptimal habitats (Peterson et al. 2002). Climate-
change therefore will force tree species to adapt, migrate or be extirpated (Davis
1989; Rehfeldt et al. 2001; Davis et al. 2005; Aitken et al. 2008). The distribution
of Mexican oaks might decrease by 7% to 48% while that of Mexican pines may
decrease by up to 64% by 2050, depending of the scenario used for estimating
effects (Gomez-Mendoza and Arriaga 2007). Whether agriculture, wood production,
or conservation, it seems obvious that the assistance of mankind will be needed to
assure the perpetuation of the goods and services demanded from natural ecosystems
(see Tchebakova et al. 2005).

3.4.2 Predicting the contemporary climatic niche of Pinus chiapensis

Classification errors from the Random Forests analysis averaged 4.7% across the 25
forests. All errors resulted were errors of commission, predicting that the climate was
suitable for P. chiapensis when it was not present. The two most important climate
variables for predicting the occurrence were (1) an interaction between the summer–
winter temperature differential and mean annual precipitation, and (2) the mean
minimum temperature in the coldest month. Figure 8a shows the location of pixels
predicted to have a climate suitable for this species in the contemporary climate,
with the insert in the upper right locating the observations where the species was
present. Notice that all actual locations are inside the contemporary predicted habitat
(Fig. 8a), which is an indication of the goodness of fit of the model and its power for
prediction. Pixels colored yellow received 50–75% of the votes; those colored red
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Fig. 8 Predicted climatic niche of Pinus chiapensis (yellow and red pixels) for the contemporary
climate (a) and the 2060 climate according to A2 scenario of the Hadley Centre (b). Dots in upper left
insert of (a) show inhabited locations of today. Inserts in upper right of (a) and in (b) show predicted
climatic niche in relation to two of the easternmost volcanoes in the Neovolcanic Axis. Yellow, 50–
75% of the votes; red, 75–100% of the votes
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received >75%. Figure 8b shows the projected 2060 climate niche according to the
A2 scenario of HAD.

Implications of Fig. 8 are that the climates in which this species occurs today
should be reduced greatly in area by 2060. For example, predicted suitable con-
temporary habitat in the states of Guerrero and Chiapas (southern México) mostly
disappear by year 2060. According to HAD, a 2060 sanctuary would be nestled
on the eastern slopes of the easternmost and highest volcano in the Neovolcanic
Axis (Pico de Orizaba, also known as Citlaltépetl, 5,600 masl). This sanctuary
is generally within the species contemporary climatic niche, although at higher
altitudes than contemporary P. chiapensis predicted habitat (inserts of Fig. 8).
Accordingly, conservation efforts for this threatened species would be to assure that
native populations are perpetuated in this sanctuary, perhaps by assisted migration
by establishing conservation ex-situ plantations upwards in altitude (del Castillo
et al. 2009).

3.4.3 Migration and assisted migration of four Michoacán conifers

As many as 14 pine species inhabit Michoacán (Cué-Bär et al. 2006), more than
in any other México state. As shown in Fig. 9 for four species, Pinus hartwegii,
P. pseudostrobus, P. devoniana (also known as P. michoacana), and P. oocarpa,
have distinctive altitudinal distributions in Michoacán (Viveros-Viveros et al. 2005,
2009; Saenz-Romero et al. 2006; Saenz-Romero and Tapia-Olivares 2008). Although
altitude is commonly viewed as a surrogate for climate, particularly temperature
(e. g., Fig. 2), the spline climate model allows the distribution of these pines to be
ordinated in 2-variable climate space. Figure 10, for instance, shows that P. hartwegii,
a species native to the highest mountains, occupies sites that are relatively cold and
moist (low aridity index values), while on the other extreme, P. devoniana and P.
oocarpa share the same range of relatively high values of the aridity index but are
separated ecologically by cold temperatures. Although this ordination is a simplistic

Fig. 9 Distribution of
provenances of four pine
species from altitudinal
transects in Michoacán plotted
in relation to the mean annual
temperature of the provenance
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Fig. 10 Ordination of
provenances of four pine
species from an altitudinal
transect in Michoacán
according to the mean
temperature of the coldest
month and annual aridity
index of the provenance
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representation of the climate variables which act to separate the distributions of
these species, Fig. 10 nonetheless illustrates the different climatic niches of these four
species in Michoacán.

Annual aridity indices (AAI) estimated for contemporary climates and for year
2030, using the A2 scenario of CCC, suggest an increase of AAI of all sites now
inhabited by these species in Michoacán (Fig. 11). These changes should have an
impact on the distribution of these species. For example, for the site now inhabited
by the population of P. oocarpa from the lowest elevation (1,075 m), AAI would
change from 0.66 in the contemporary climate to 0.080 in 2030, a value that is far
higher than climates inhabited by any of these species today. The arrow attached to
this data point in Fig. 11 suggests that the AAI of this site today should recur at an

Fig. 11 Annual aridity index
estimated for contemporary
(filled symbols) and future
climate (empty symbols, year
2030, Canadian model,
scenario A2), for locations
presently inhabited by Pinus
devoniana, P. hartwegii, P.
oocarpa and P. pseudostrobus
in the central-west Mexican
state of Michoacán. Arrows
indicate suggested assisted
migration upwards in altitude
to match present genotypes
with locations where will occur
annual aridity values for which
they are adapted
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altitude about 300 m higher in 2030 than at present. Likewise, at the upper altitudes,
the AAI of the site inhabited by P. hartwegii at 3000 m would increase from the
0.046 at present to 0.057 by 2030, a value seemingly better suited to P. devoniana and
to P. pseudostrobus than the P. hartwegii that is there now, provided that the mean
temperature in the coldest month would change by about 4◦C (see Fig. 10).

By integrating the effects of temperature and precipitation, aridity indices tend to
be closely related to the altitudinal distribution of species (see Rehfeldt et al. 2008). It
is well known that increases in aridity decrease the carrying capacity of a site, increase
moisture stress in plants, and eventually lead to mortality and extirpation. Because
immigration is problematic in a rapidly changing climate (Rehfeldt et al. 1999, 2006;
Tchebakova et al. 2005; Aitken et al. 2008), the species of pine in Figs. 10 and 11
undoubtedly will require human assistance if they are to inhabit a future climate that
is similar to those inhabited today. A reasonable option would be to assist migration
by moving the natural population—by artificial plantation programs—to the location
at a higher altitude where the future aridity is expected to be equivalent to that where
the populations grow today.

A program seeming suitable for Michoacán that targets the climate of 2030
would invoke a general upwards transfer pattern, with, for instance, lower altitudinal
populations of P. oocarpa and of P. devoniana being planted in place of higher
altitudinal populations of the same species; and high altitudinal populations of
P. psedostrobus displacing low altitudinal populations of P. hartwegii; while the
highest altitudinal distributions of the latter species would essentially be eliminated
in Michoacán. The upward altitudinal migration would need to be between 300 to
450 m of altitudinal difference, with the larger interval suited mostly to populations
at high elevation (Fig. 11). It also is expected (Fig. 11) that the present P. oocarpa
populations would be extirpated at their lower altitudinal distribution, between 1,075
and 1,400 m. Abandoned niche space would be available for immigration tropical dry
forest species (e. g., Bursera spp.), presumably because P. oocarpa currently is the
only pine species able to survive in the low altitudinal ecotones with the tropical dry
forest (Sáenz-Romero et al. 2006).

Particularly disconcerting are the upper altitudinal extremes of the pine dis-
tribution, which in Michoacán are at volcano Pico de Tancítaro. Here, the 2030
distribution of P. hartwegii would be reduced to only a portion of the contemporary,
from 3,000–3,600 m at present (Viveros-Viveros et al. 2009) to approximately 3,500–
3,600 m, with the populations at the highest elevations being lost. Although this
volcano reaches 3,845 m, upper slopes are largely steep and rocky with little potential
to support viable pine populations. The conclusion seems inescapable that the distri-
bution of P. hartwegii will be greatly reduced in size. Consequently, a management
option might be to transfer high altitudinal populations for which extirpation is
imminent to volcanos of higher altitude in the same Neovolcanic Axis, like to Volcán
de Colima (4,300 m), Popocatépetl (5,400 m), Iztaccíhuatl (5,220 m) and Citaltépetl
(5,600 m) (Viveros-Viveros et al. 2009).

However, would it be sensible to begin now the transfer of populations of these
four pine species to target future climates using only values of AAI? To be sure,
additional climate variables (Fig. 10) undoubtedly should be considered after the
completion of a thorough analysis of the climatic niche as presented above for
P. chiapensis (Fig. 8). Other considerations would involve the question of which
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of the many GCMs and projections should be used for in a proactive program.
Figure 3 shows clearly that projected temperatures for all models and scenarios are
similar for 2030, but diverge considerably for 2060 and 2090. To this end, Rehfeldt
et al. (2009) suggest using the consistency among GCM projections as a hedge
against uncertainty; management should be encouraged in those areas where the
projections concur. Another question must deal with the time frame: if managers
plant altitudinally upwards now to match climates expected by years 2060 and 2090,
they would risk frost damage on young seedlings and concomitant low survival
(del Castillo et al. 2009); transferred populations would not yet be genetically suited
to a climate targeted for so many decades in the future. Nonetheless, a lack of
action puts natural populations at risk from physiological stresses (McLachlan et al.
2007) such that seed production could be insufficient to support large-scale planting
programs. Inaction, therefore, is not a realistic option.

3.4.4 Conservation programs in the Tehuacán Valley

Conservation biologists currently are faced with accommodating the impacts of
climate-change on threatened and endangered species. The Tehuacán Valley (corner
between Puebla, Veracruz and Oaxaca States, Fig. 1), for instance, is a semiarid, in-
land region extremely rich in endemic cacti for which a biosphere reserve, Tehuacán-
Cuicatlan, has been established. This unique assemblage of vegetation occurs in a
region where the transitions in climate are remarkable. As shown by the spline model
(Fig. 12), for instance, a transect from northwest to southeast across this valley would
begin on the warm interior slopes of the Sierra Madre Oriental, where the climate of
today generally exceeds 7,000 degree-days>5◦C, and end high in the Sierra Madre
Oriental where degree-days may be <2,100 (Fig. 12a). Precipitation, moreover, may
be as low as 200–400 mm on the west, but may be >3,000 mm in the mountains on
the east (Fig. 13a).

A concern is that climate-change will initiate a dramatic reduction or even disap-
pearance of cacti habitat within the reserve and that suitable habitats will appear
elsewhere in the future (Téllez-Valdés and Dávila-Aranda 2003). For managers
attempting to decide where to plant these endangered species to target future
climates, our spline model can be a valuable tool. The models aptly illustrate the
increase in aridity that is expected to occur in this valley by 2090. According to the
A2 scenario of CCC, degree days >5◦C should reach more than 8,000 in much of
interior Tehuacán Valley and along the eastern slopes of Sierra Madre Oriental
(Fig. 12b). Meanwhile, areas with annual precipitation of only 200–400 mm should
expand significantly in this valley while a dramatic reduction in precipitation should
occur along the eastern slopes of the Sierra Madre Oriental (Fig. 13b).

As shown above for P. chiapensis and for numerous North American species
by Iverson et al. (2008) and Rehfeldt et al. (2006), species-specific guidelines can
be developed that pinpoint future areas expected to have climates similar to those
inhabited by species today. These predictions pertain to developing management
strategies for assisting migration of threatened species. While our maps were made
on a 1 km grid, the climate model itself describes climate on a continuous scale.
Because soils, insects and disease are also important besides climate in deter-
mining suitable habitat, managers will need to superimpose intuitive decisions on
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Fig. 12 Panels of the
Tehuacán Valley showing the
transition in degree-days
across the desert into the high
mountains for the
contemporary climate (a) and
that of 2090 (b) according to
the A2 scenario of the
Canadian Center for Climate
Modeling and Analysis

predictions. Mapping can be done at fine resolutions that are dependent only
on the resolution of the digitized elevations, thereby allowing managers to in-
clude local topographic (e.g., aspect, drainages, slope positions) effects into their
guidelines.
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Fig. 13 Panels showing for the
Tehuacán Valley the transition
in annual precipitation from
the desert of the valley floor
into the moist eastern slopes of
Sierra Madre Oriental to the
east (Veracruz and Oaxaca
States) for the contemporary
climate (a) and that of 2090 (b)
using output from the A2
scenario of the Canadian
Center for Climate Modeling
and Analysis

4 Conclusions

The climate surfaces are available for providing predictions of 1961–1990 monthly
mean precipitation, temperatures (average, maximum and minimum averages),
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and variables derived therefrom (e.g., degree days, annual aridity index, etc.) at
http://forest.moscowfsl.wsu.edu/climate/. Either point estimates, derived from the
latitude, longitude, and elevation of an input dataset, or gridded estimates can be
obtained. The estimates can be used as a powerful resource for making inferences
about the distribution of species or ecosystems (Rehfeldt et al. 2006), understanding
of genetic differentiation among populations for specific species distributed along
climatic gradients (Sáenz-Romero et al. 2006), or developing climatically based seed
transfer guidelines (Beaulieu et al. 2004; Rehfeldt 2004; St Clair and Howe 2007).
While predicting the distribution of vegetation associations is feasible and useful, one
should be aware that species respond individualistically to climate and, as a result, the
disparate climatic variables often are of different degree of relevance for each plant
species (Rehfeldt et al. 2008).

Geographic variables such as latitude and altitude frequently are correlated with
different performance of plant populations when grown in the same environment,
as, for example the pronounced differentiation between north–south Pinus greggii
populations in México (Donahue and Lopez-Upton 1996; Dvorak et al. 1996b).
Geographic variables, however, are surrogates for the climate variables operating in
natural selection. Knowledge of climatic variables that drive genetic differentiation
among plant populations facilitates the development of management guidelines for
seed collection and seed transfer in reforestation based directly on, for example,
annual aridity index values (Sáenz-Romero et al. 2006), instead on altitude or
latitude. Although management strategies must consider variables such as potential
negative interactions among species or forest fires dynamics (Pearson and Dawson
2003; van Zonneveld et al. 2009), the spline climate surfaces along with their derived
variables provide a foundation for understanding the relationship between plants
and climate and for developing strategies for accommodating projected impacts of
climate-change.
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