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Factors affecting the accuracy of genomic
selection for growth and wood quality
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Abstract

Background: Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic
markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which
is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the
present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.]
BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy.

Results: The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that
were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms
(SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were
obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy
was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection,
gains per unit of time were three times higher with the GS approach than with conventional selection. In addition,
models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated.
Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the
inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to
obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the
genome or from a single linkage group, further confirming the implication of relatedness and potential long-
range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was
obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range
LD in this population.
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Conclusions: This study supports the integration of GS models in advanced-generation tree breeding programs, given
that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness
and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles,
much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional
approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable
to mass vegetative propagation of selected stock, such as spruces.

Keywords: Genomic selection, Black spruce, Wood properties, Tree improvement and breeding, Genomic-estimated
breeding values, Gene SNPs
Background
Genomics of forest trees is rapidly gaining momentum
as it promises to unravel the genetic control of adaptive
and economically important traits, in part to satisfy the
increasing demand for high quality wood fibre world-
wide but also, to cope with the increasing challenges
imposed by changing climates and environments [1, 2].
Uses of genomic information for breeding are diverse
and may rely on reconstruction of the pedigree, verifica-
tion of co-ancestry in breeding populations for genetic
diversity management purposes, or on the correlation of
marker information with phenotypes for selection [3].
For example, marker-assisted selection (MAS) was among
the first approaches suggested to accelerate tree improve-
ment [4]. In conifers, with the use of current statistical
methods and correction for multiple testing, a limited
number of markers or genes have been reported to be
genetically linked to economically important traits, such
as wood quality and/or tree growth [5–7]. Individual Sin-
gle Nucleotide Polymorphism (SNP) markers are largely
constrained to explaining only a minor proportion of the
variation, as they rarely explain more than 5% of quantita-
tive trait variation [5–9]. Therefore, for most quantitative
traits, the association approach does not appear useful
enough in breeding selection where accurate predictions
of genetic values are necessary. When using large progeny
sets, the proportion of trait variance explained by individ-
ual quantitative trait loci (QTLs) has only been slightly
higher, which is consistent with the multigenic control of
these traits [9–11]. Additionally, the weak linkage disequi-
librium (LD) between markers and QTLs across different
genetic backgrounds, as well as the narrow range captured
in typical QTL studies limits their use to within family
selection.
To overcome the limitations of MAS, genomic selec-

tion (GS) uses dense genomic marker information
(called genomic signatures or profiles) of individuals, as
well as their parents when available, to predict their
breeding value [12]. Contrary to MAS, GS models simul-
taneously estimate the effects of all available markers in
a training population. Predictions or genomic-estimated
breeding values (GEBVs) are then made for progeny of
the same or future generations [12]. One of the basic as-
sumptions is that the markers are scattered throughout
the genome so that at least some of them are in direct
linkage with causal loci [13].
Most economically important traits are of quantitative

nature and controlled by many genes [2]. Consequently,
it is crucial that an adequate number of markers are
used to attain sufficient coverage of the genome, and
that as many loci as possible are in LD with QTLs [14].
The combination of the rapidly decreasing costs of high-
throughput genotyping as well as the significant ad-
vances in sequencing and subsequent computation has
facilitated GS-based selection approaches to be consid-
ered in organisms even with very large genomes, such as
trees and conifers, in particular.
Initially employed in dairy cattle breeding [12, 14, 15],

GS has also been applied to other animals such as mice
[16], and in plant and crop breeding [17–19]. In trees,
GS has been tested in both angiosperms such as euca-
lypts [20], and gymnosperms such as loblolly pine (Pinus
taeda L.) [21, 22], maritime pine (Pinus pinaster Aiton),
[23, 24] and white spruce and its hybrids (Picea glauca
(Moench) Voss) [25–28]. However, studies on boreal
conifer species are still relatively rare, which is most
likely due to the fact that substantive genomic resources
were only recently made available for several species
(reviewed by De La Torre et al. [29]).
Generally, tree improvement of boreal conifer species

is characterized by breeding cycles of 30 years and lon-
ger, which includes production of crosses, field evalu-
ation of progeny and performing selections, and the
propagation of selected superior material through sexual
or vegetative means [30]. Early selection methods that
facilitate accurate prediction of mature phenotypes at a
younger stage are therefore vital to shorten breeding cy-
cles and ultimately improve the cost-efficiency of such
breeding programs. Traditionally, these methods have
relied on indirect methods of phenotypic selection,
which may be less effective, especially when genetic cor-
relations between the juvenile and mature traits are low
[31]. Performing selection directly on genomic marker
information would, in theory, avoid the loss of prediction
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accuracy due to imperfect correlation between different
life stages, and would mostly be dependent on the herit-
ability of the target trait at the mature stage [32].
Genomic selection promises to significantly reduce the

time commitment for completing a breeding cycle and
thus to increase genetic gain per time unit by avoiding
the field testing stages, that often represent the largest
time commitment [3, 32]. Technically, the estimates of
breeding values could be obtained at the seedling stage
or even from seed or somatic tissue [1]. Hence, the time
required to select elite genotypes of northern conifers,
which is largely impacted by their slow inherent growth
could be overcome, and mature phenotypes would only
be needed for model construction and validation [26].
Previous GS studies in forest trees have reported mod-

erate to high accuracy of selection models with correla-
tions of between 0.6 and 0.8 when comparing GEBVs
with conventional EBVs, when full-sib families were con-
sidered [20, 25, 33]. This suggests that under certain
conditions of high relatedness where long-range linkage
disequilibrium (LD) is likely more a potent factor of ac-
curacy than short-range LD, the GS approach can easily
compete with the conventional pedigree-based breeding
approach or even outperform it due to the reduction in
time needed to complete a breeding cycle [25, 32, 33]. In
contrast, lower accuracy values (0.3 and 0.5) have been
observed when half-sib families were considered [26, 28],
and GS models developed in unrelated trees had very low
power to make prediction [25, 26]. The marginal to low
performance of these latter two cases of GS is linked to
the larger effective population size and low LD, which is
common to natural populations of undomesticated trees
[34–36]. Large population sizes indeed results in more re-
combination and a greater diversity among available gam-
etes within populations, from high outcrossing rates in
wind-pollinated species such as black spruce [37]. More-
over, the genetic drift common to small populations with
fewer parents generating non-random associations among
alleles at different loci, i.e., gametic disequilibrium or LD
[38], is not a significant factor in such conditions.
Black spruce (Picea mariana [Mill.] B.S.P.) is one of

the most abundantly distributed trees throughout the
transcontinental boreal forest of Canada and Alaska. It is
also one of the most reforested species in Canada, with
65 million seedlings being planted per year in the prov-
ince of Québec alone, and has been the subject of
advanced-generation breeding programs [30].
The objectives of this study were to (1) estimate accur-

acies and gains per unit of time derived from GS for
wood quality and growth traits in an advanced-breeding
population of the black spruce; (2) assess variation in
accuracy from building site-specific or multiple-site
models; (3) explore the roles of relatedness, short- and
long-range linkage disequilibrium in genomic prediction
accuracy by simulating different family structures and
testing different subsets of markers; and (4) investigate
the effect of sample sizes on model accuracy.
To meet these objectives, we used trait data obtained

from 25-year-old black spruces grown in a genetic test
replicated on two environmentally contrasted sites in
Québec Canada. The genetic test consisted of full-sib
families generated using a partial diallel mating design.
Trees were genotyped for 4993 SNP markers representa-
tive of as many distinct gene loci, and originating from a
black spruce high-confidence SNP catalogue previously
assembled and validated [39].

Methods
Sampling of plant material
Phenotypic and genetic data were obtained for 734 25-
year-old progeny trees belonging to 34 controlled-
pollinated families derived from a partial diallel mating
design that consisted of 27 parents originating from 9
provenances from the Canadian provinces of Ontario,
New Brunswick and Manitoba, and one from Maine in
the northeastern United States. The parental trees had
previously been identified for their superior growth and
stem form in a range-wide provenance trial established
on 4 sites in Québec [40]. Progeny were raised as cut-
tings in the nursery for three years and then established
in 1991 by the Ministère des Forêts, de la Faune et des
Parcs du Québec (MFFPQ) on two forest sites using a
randomized complete block design, with 4-tree row plots
and a 2 m by 2 m spacing. The test sites are located in
two contrasting environments in the eastern part of the
province of Québec: 1) the Matapedia arboretum
(latitude: 48° 32’N, longitude: 67° 25’W, elevation 216 m,
333 trees sampled), which is characterized by a warmer
climate typical of the balsam fir – yellow birch forest,
and 2) the Robidoux site (latitude: 48° 18’N, longitude:
65° 31’W, elevation 275 m, 401 trees sampled), which is
characterized by a colder climate typical of the balsam
fir – white birch forest domain and under the influence
of the Chic-Choc mountains (1270 m) on the Gaspésie
peninsula. Needle tissues for DNA extraction were sam-
pled in the upper third of the crown, immediately placed
on ice and stored at −10 °C until further processing.
DNA extraction protocols used for collected samples are
described in detail in Pavy et al. [41].

Phenotypic trait determination
Tree height and diameter at breast height (DBH, 1.3 m
above ground) were recorded in 2013 at the age of 25
years, and a wood increment core was extracted from
the south facing side of each tree. Cores were stored in a
freezer, conditioned to 7% moisture and cut to 1.68 mm
thickness prior to X-ray densitometry analyses (Quintek
Measurement Systems, TN). Wood density was calculated
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as a ring area weighted mean from recorded pith to bark
wood density profiles. Microfibril angle (MFA) was esti-
mated using X-Ray diffraction, on a Bruker D8 Discovery
unit equipped with an area array detector, as per
Ukrainetz et al. [42].

Genotyping
In recent years, significant genomic resources have been
developed for white spruce and Norway spruce (Picea
abies (L.) Karst.), including draft genome sequences
[43–46], genetic and QTL maps [11, 47, 48], gene cata-
log and expression chips [49], large SNP registries and
high throughput genotyping chips [40, 50], but compara-
tively few genomic resources exist for black spruce.
Before investigating GS in black spruce, exome capture
and sequencing were used together with an in-house
bioinformatic pipeline to produce a registry of 97,000
high-confidence SNPs pertaining to around 15,000 gene
sequence clusters [39]. In addition, we compiled success-
fully genotyped gene SNPs from previous black spruce
genomic studies [9, 41, 51–53]. Altogether, this informa-
tion was used to develop an Infinium iSelect SNP geno-
typing array (Illumina, San Diego, CA) containing 5,300
SNPs representing as many distinct black spruce gene
contigs [39]. Based on control DNA replicates, the chip
genotyping reproducibility rate obtained was 99.9%. For
genomic selection modelling and analyses, genotyping
information from a total of 4,993 SNPs representing as
many distinct gene loci spread among the 12 spruce
linkage groups was retained for each of the 734 progeny
trees, resulting in a total of >3.6 million SNP calls. Given
the estimated 1,850 centimorgans (cM) of the black
spruce genome [51, 54], this corresponds to a marker
density of approximately 2.7 per cM. For all 4,993 SNPs
retained for GS analyses, the following in-house quality
criteria were met: biallelic SNPs matching with both
parental genotypes, a GenTrain (Illumina, San Diego,
California) quality score ≥0.25, a call rate ≥85%, a fix-
ation index |FIS| ≤ 0.50, and a minor allele frequency
(MAF) ≥0.0055. Furthermore, SNPs with minor fre-
quency alleles that were present in less than 10 individuals
were not considered. Of the retained markers, only 2%
had a minimum allele frequency (MAF) < 5%, indicating a
small number of rare allele markers.

Estimating "true" breeding values
For each trait, an individual tree (so called “animal”)
model was fit using the GS3 software [55] in order to
estimate reference or “true” breeding values:

y ¼ Xβþ Spþ Tu ð1Þ

where, β is a vector of fixed effects, including an overall
mean and the fixed site effect, p is the permanent
random block effect, u is the vector of random additive
polygenic effects following a distribution ~N(0, Aσ2u)
and e is the error term with ~N(0, Iσ2e). X, T and S are
incidence matrices, and A is the numerator of the rela-
tionship matrix describing the additive relationship
among individuals and I is the identity matrix. All the
trees sampled were used to estimate these reference
breeding values.

Basic genomic selection models with all information
In the first set of analyses, phenotypes from both sites
were combined and GS models were fit using a simple
Bayesian framework in the GS3 software [55, 56], con-
sidering all SNPs in the models. Phenotypes were stan-
dardized by block-within-site effects and site standard
deviation in order to account for differences between
sites. The genomic-estimated breeding value (GEBV) of
each tree was estimated for all phenotypic traits using
SNP marker information whose effect was estimated
with the linear mixed model:

y ¼ Xβþ Zαþ e ð2Þ
where, y is the vector of standardized phenotypes, β is a
vector of fixed effects including an overall mean, α is the
random marker effect, e the random error, and X and Z
are incidence matrices. The latter was built from the
number of alleles observed for each individual and SNP,
and coded as 0, 1 and 2 representing the number of cop-
ies of the minor allele. Approximately 1.8% of the total
number of genotypes was missing and imputed as the
mean of the respective marker rounded to the next
genotype value. Given that only biallelic markers were
retained for the analyses, values of +0.5aj and −0.5aj
were arbitrarily assigned to alleles 1 and 2 respectively,
which follows conventional parametrization where the
difference between the two homozygotes equals two aj
[55]. Marker effects were assumed to follow a normal
distribution ~N(0, Iσ2a), where I is the identity matrix.
The model hence assumes common variance and all
marker coefficients are minimized to the same extent,
which is commonly called ridge regression. The ap-
proach was deemed appropriate for similar traits evalu-
ated in white spruce and assumingly controlled by
many genes of small effect [25], and was hence
retained for all analyses in this study. GEBVs were es-
timated as

ĝi ¼
Xn

j¼1
Z0
i jâj ð3Þ

where, Z’ij is the indicator co-variate (−1, 0 or 1) for the
ith tree at the jth locus and âj is the estimated effect at
the jth locus.
The GS3 software uses the Gauss-Seidel algorithm

with residual update for best linear unbiased prediction
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(BLUP), and for best linear unbiased estimation of ran-
dom and fixed effects respectively [55]. The algorithm is
extended by Gibbs sampling for estimation of variance
components. The Gibbs sampler was run for 100,000
iterations with a burn-in of 20,000 iterations. Every
thousand iterations, a sample was retained and conver-
gence of the posterior distribution was verified using
trace plots. Flat priors were found to give the most
stable results of convergence for the various models
and subsamples tested.
Model validation and estimation of accuracy
Tenfold cross-validation was performed for pedigree-
based and marker-based models in order to obtain pre-
dicted breeding values for both approaches. For each
round of cross-validation, 10% of the trees were ran-
domly drawn from each family and set aside for valid-
ation, the remainder being used for model training. Each
individual was thus included in one validation set. Model
quality was evaluated by the accuracy, r(GEBV, EBV),
which is defined here as the correlation between the
cross-validated genomic-predicted breeding values and
the “true” or reference breeding values previously calcu-
lated using pedigree information and all available sam-
pled trees. The predictive ability, r(y, ŷ), was similarly
evaluated as the correlation between predicted and ac-
tual phenotypes.
Testing site specificity
Different GS scenarios were also tested to investigate the
influence of site on model quality: the basic model con-
tained all 734 trees from the two sites combined (see
above); another set of models were trained and validated
with only data from a single site, and the last models
were trained with data from one site and validated with
data from the second site.
Testing the effect of relatedness on accuracy estimates
In order to address questions related to the influence of
relatedness and long-range linkage disequilibrium (LD)
on genomic selection accuracy, we investigated the effect
of family structure. Training and validation sets were
genetically related in the basic models, i.e. different trees,
but originating from the same full-sib families. For com-
parison purposes, a genomic selection scenario with
half-sib families was also tested where the training and
validation sets shared female progenitors, but form dif-
ferent families, hence implicating different males, or vice
versa. Estimates of model accuracy were also obtained
by using completely unrelated trees from families and
provenances excluded from model training.
Testing subsets of markers
To investigate the effect of LD, and that of various sub-
sets of markers on GS model accuracy, different subsets
were delineated and used to build models. Hence, gen-
omic selection models were constructed with subsets of
1,000, 500 and 250 markers randomly drawn from the
4,993 SNPs available, as well as with a set of 250
markers having the largest absolute effects and a set
containing the 4,743 remaining markers. Accuracy and
predictive ability of these reduced models were then
compared with those of the basic model. GS models
were also constructed separately with markers identified
for each of the 12 black spruce linkage groups, in order
to investigate the contribution of various genomic re-
gions to the genetic control of the different traits and
the influence of LD on GS model accuracy. Given the
very high synteny and collinearity between the white
spruce and black spruce genomes [51], we used the
more complete linkage mapping information of white
spruce gene homologs to approximate the genomic posi-
tions of black spruce genes carrying the SNPs consid-
ered herein. Of the 4,993 black spruce gene contigs of
the present study (with gene nomenclature according to
the white spruce gene catalogue of Rigault et al. [49] as
described in Pavy et al. [39]), 2,928 genes had homologs
mapped on the most recent white spruce reference gen-
etic map containing nearly 9,000 genes [48]. These ho-
mologs were well distributed over the 12 linkage groups
with, on average, 244 (+/- 15) gene homologs repre-
sented per chromosome.

Testing the size of training data set
Random subsets of individuals of various sizes were used
to examine the minimum number of trees needed to
build GS models without significantly loosing accuracy.
Starting with the complete sample set of 4,993 SNPs and
734 trees, about one third of the trees was iteratively
removed, creating subsets of 490, 330, 224, 147 and
106 trees that were subsequently analysed with all the
4,993 SNPs.

Genetic gain estimations
Estimates of genetic gain from conventional selection or
from GS were obtained by using predicted breeding
values for each trait and by considering a selection in-
tensity of 5%. Gains per year were obtained by assuming
a spruce breeding cycle of a minimum of 28 years for
conventional selection, and a shortened cycle of 9 years
for GS, with 4 years for crosses and production of see-
dlots that are full-siblings to the training population,
followed by 1 year for selection of individuals using
markers and genomic selection models, and 4 years for
vegetative propagation of selected individuals for seedling
production. This last scenario thus assumes GS under a
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forward selection scheme, which is possible in black
spruce [1].

Results
Genotypic and phenotypic information was gathered
from a total of 734 25-year-old black spruce trees
planted in two different forest environments, and repre-
senting an advanced-generation breeding population of
full-sib families from crosses involving parents from nine
Canadian provenances and one from Maine in the
U.S.A. Population structure was found to be weak, in
congruence with previous genetic studies relying on mo-
lecular markers and implicating populations from east-
ern Canada [52, 53, 57]. Indeed, spectral decomposition
of the genomic relationship matrix [15, 25] according to
the geographic distribution of origins revealed that about
five percent of the variation was captured by the first
eigenvector. We concluded that the genetic and genomic
relationship matrices were sufficient to capture related-
ness among individuals, and as such population struc-
ture was not considered in subsequent GS analyses.

High accuracy of GS models in combined-site analyses
When the two test sites were simultaneously considered,
with all markers and independent trees for validation,
the accuracy of the GS models was high for all traits
assessed. Moreover, these accuracy estimates were simi-
lar to those of the polygenic models using pedigree and
phenotypic information (Table 2). Differences in accur-
acy between the different phenotypic traits for both the
GS and polygenic models were also minor. Larger differ-
ences were found for predictive ability where the most
accurate predictions were recorded for height growth.
The accuracies largely mirrored the trends in individual
trait heritability (Table 1), where high estimates of gen-
etic control were observed for MFA (h2 = 0.74) and
height growth (h2 = 0.68), and somewhat weaker values
observed for DBH and wood density (h2 = 0.57 and h2 =
0.41, respectively).
In terms of genetic gains, the model containing trees

from both sites resulted in the largest gain predictions
(Table 2). The gain ratio, or in other words, that from
marker models versus conventional pedigree selection
was high for all traits, with DBH showing the weakest
ratio (below 90%). Gain ratios above 100% were obtained
for wood traits, indicating that marker-based models
would allow for better gains to be obtained than
pedigree-based models. When considering the potential
time saved for breeding based on GS, the annual gain ra-
tios for marker-based models versus conventional selec-
tion increased considerably to being around 3. This is
because GS is conducted without field testing and thus,
avoids the delays associated with tree growing and asses-
sing phenotypic trait variation from mature trees.
Between-site differences in genomic selection models in
black spruce
In order to assess the extent of the genotype-by-
environment interaction, and to evaluate if GS model ac-
curacy is affected by sites, we constructed and validated
GS models for each of the two different sites (Table 2).
Accuracy estimates of models built using data from one
site only were slightly inferior compared with accuracies
obtained with the combined-site analyses, especially for
site 1. Accuracy estimates of models developed with data
collected on one site and validated with data collected
from the second site were high, and only marginally
lower than estimates for validations carried out within
the same site. These results indicate that genotype-by-
environment interaction is low, and that GS models can
most likely be applied over a large range of sites without
the need for increased tree sampling for independent
model construction, given that the two sites in the
current study represented quite contrasting environmen-
tal conditions.
The relatively good overall model accuracies obtained

by applying models developed on one site and applied to
the second one does not mask important within-site en-
vironmental differences. Field records identified more
trait variation and vegetation competition on site 1
(Matapedia, warmer site) compared with site 2 (Robidoux,
colder site), which led to lower heritability estimates for
site 1 (Table 1). Additionally, a smaller number of trees
were available for site 1 compared to site 2 (333 and 401
trees analysed, respectively). Hence, GS models trained on
site 2 and validated on site 1 or site 2 were marginally
more accurate, which was especially true for wood density
and diameter. The same trend was observed for prediction
models based on pedigree and phenotypic information.

Relatedness
Models built with a half-sib structure led to a large de-
crease in accuracy, predictability and genetic gain
(Table 3). Although model validation was set up equally
for all traits, accuracy varied much more among traits
than when full-sib models were applied. The loss of
model quality was most pronounced for MFA, where
accuracy was only half. When cross-validation was
conducted with completely unrelated progeny from
different provenances and families (whether with full-
sib or half-sib structure), model accuracy dropped vir-
tually to zero and was associated with high error
rates (results not shown).

Marker subsets inform on the nature of causative linkage
disequilibrium
We also investigated the effect of reduced marker sets
on the accuracy of GS models. The use of fewer markers
would result in significant cost reductions for genotyping,



Table 1 Variance component estimates from genomic selection analyses, combined-site and single-site analyses. “Pedigree” indicates
variance component estimation based on pedigree and phenotypic information, and “Markers” indicate SNP information from all 4,993 SNPs

Trait Model σ2a
a VA

b σ2u
c σ2e

d h2i
e

Wood density Combined sites Pedigree - - 597.73 870.01 0.41

Markers 0.29 551.46 - 878.19 0.39

Site 1 Pedigree - - 973.94 1407.01 0.41

Markers 0.50 957.04 - 1398.98 0.41

Site 2 Pedigree - - 653.68 216.32 0.75

Markers 0.27 523.71 - 291.00 0.64

Diameter (DBH) Combined sites Pedigree - - 126.42 93.69 0.57

Markers 2.9E -2 55.88 - 135.02 0.29

Site 1 Pedigree - - 123.22 129.34 0.49

Markers 0.04 68.09 - 164.37 0.29

Site 2 Pedigree - - 143.65 54.22 0.73

Markers 0.03 60.26 - 106.18 0.36

Height Combined sites Pedigree - - 3503.73 1613.54 0.68

Markers 0.97 1851.53 - 2514.81 0.42

Site 1 Pedigree - - 3232.04 1623.81 0.67

Markers 1.14 2182.23 - 2227.79 0.49

Site 2 Pedigree - - 4494.96 1222.76 0.79

Markers 1.32 2530.77 - 2341.31 0.52

Microfibril angle Combined sites Pedigree - - 0.14 4.8E -2 0.74

Markers 3.5E -5 6.7E -2 - 8.8E -2 0.43

Site 1 Pedigree - - 0.15 5.5E -2 0.73

Markers 4.5E -5 8.6E -2 - 9.2E -2 0.48

Site 2 Pedigree - - 0.15 3.1E -2 0.83

Markers 4.3E -5 8.2E -2 - 7.2E -2 0.53
aσ2a is the additive genetic variance explained by marker loci
bVA is the additive genetic variance based on markers was estimated as VA ¼ 2σ2a

Xk

i¼1
pkqk :

cσ2u is the polygenic variance estimated based on pedigree
dσ2e is the residual variance
eh2i is the individual trait heritability
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which would have some impact on the overall cost of GS,
but would also impact the extent of LD that is picked up
by the prediction models. Decreasing the number of
markers from almost 5,000 to 1,000 randomly sampled
markers did not lead to a notable reduction in the accur-
acy of GS models (Fig. 1). However, using less than 500
markers led to an appreciable loss in accuracy for all four
traits. Figure 1 shows the accuracy plots for several sce-
narios, where the loss of accuracy was mostly related to
less scattered correlation plots due to a range reduction of
genomic-estimated breeding values (GEBV).
The modelling of 250 markers that had previously

been identified to contribute the largest absolute effects
in the basic model, led to accuracy estimates comparable
to those of the basic model including all 4,993 markers
(Fig. 1). These models also perform substantially better
than models based on 250 random markers, which is
again related to an increase of range in GEBV estimates
(Fig. 1). However, the average MAF of largest-effect
markers was also significantly higher (student t, P <
0.0001, for all traits) than the average MAF of remaining
4,743 markers of lower effects. Markers with the largest
effects most likely retraced family linkages better, given
their higher MAF and thus, higher information value.
Modelling the remaining 4,743 lower-effect markers led
to accuracies marginally lower than estimates for the full
model.

Linkage groups have similar effects on GS model
accuracies
In a further analysis, we investigated the effect of the
genomic location of markers of GS models for the differ-
ent traits. Therefore, we used markers of genes for which
a set of 2928 homologs have been recently mapped to
the white spruce genome [48], which has been previ-
ously shown to be highly syntenic et collinear to the



Table 2 Genomic selection analyses based on all marker information (4,993 SNPs) and following different schemes of model building and
application. “Pedigree” indicates that only pedigree information was used for prediction after model calibrations, which is also referred to as
the conventional breeding approach in the body of the text; “Markers” indicates that SNP information was used for prediction. All results are
from cross-validations using 10 replicates on randomly-selected trees not included in model fitting, but from the same families used to fit
models. The first scheme considered all 734 trees from the two sites combined. Models in other schemes were trained on one site only and
whether applied on the same or on the other site, respectively. For comparative purposes, the “Site_mean” scheme represents the mean of
5 models run on 359 trees corresponding to the mean number of trees per site. Model accuracy is the correlation between the cross-
validated estimated breeding value (using independent sets of trees) and the “true” reference breeding value. The predictive
ability is the correlation between the predicted and the actual phenotypes. Genetic gains are given in absolute values and
percentages are given in brackets. Gain estimates are based on predicted phenotypes and a selection intensity of 5%. Annual
gain estimates were based on assumptions of a conventional breeding cycle length of 28 years for pedigree selection (“Pedigree”), and a
shortened cycle length of 9 years for selection with markers (“Markers”), with 4 years for crosses and production of seedlots that are
full-siblings to the training population, followed by 1 year for selection of individuals using markers and genomic selection models, and
4 years for vegetative propagation of selected individuals for seedling production

Trait GS scenario Accuracy (error) Predictive ability (error) Gaina (percent) Gain
ratio

Gain per year Gain per
year ratio

Pedigree Markers Pedigree Markers Pedigree Markers M/Pb Pedigree Markers M/Pb

Wood density Combined sites 0.89 (0.03) 0.84 (0.02) 0.45 (0.09) 0.49 (0.07) 34.74 (0.08) 35.63 (0.09) 1.03 1.24 3.96 3.19

Site1 0.80 (0.08) 0.77 (0.06) 0.34 (0.16) 0.38 (0.12) 35.90 (0.09) 31.87 (0.08) 0.89 1.28 3.54 2.77

Site2 0.88 (0.05) 0.82 (0.10) 0.52 (0.15) 0.56 (0.12) 26.25 (0.06) 29.48 (0.07) 1.12 0.94 3.28 3.49

Site_mean 0.85 (0.05) 0.81 (0.05) 0.42 (0.18) 0.43 (0.16) 30.15 (0.07) 28.55 (0.07) 0.95 1.08 3.17 2.94

Site1→ 2 0.79 (0.05) 0.77 (0.08) 0.42 (0.16) 0.44 (0.19) 24.60 (0.06) 21.47 (0.05) 0.87 0.88 2.39 2.72

Site2→ 1 0.85 (0.04) 0.80 (0.08) 0.36 (0.13) 0.39 (0.11) 40.02 (0.10) 45.46 (0.11) 1.14 1.43 5.05 3.53

Height Combined sites 0.88 (0.03) 0.86 (0.03) 0.56 (0.08) 0.57 (0.07) 105.17 (0.13) 104.57 (0.13) 0.99 3.76 11.62 3.09

Site1 0.84 (0.05) 0.81 (0.04) 0.51 (0.11) 0.51 (0.11) 53.95 (0.07) 52.17 (0.07) 0.97 1.93 5.8 3.01

Site2 0.88 (0.02) 0.85 (0.03) 0.58 (0.09) 0.58 (0.12) 82.89 (0.10) 78.69 (0.10) 0.95 2.96 8.74 2.95

Site_mean 0.85 (0.05) 0.83 (0.05) 0.55 (0.12) 0.55 (0.12) 87.00 (0.11) 84.56 (0.11) 0.97 3.11 9.4 3.02

Site1→ 2 0.84 (0.03) 0.83 (0.04) 0.56 (0.12) 0.56 (0.13) 75.93 (0.09) 74.56 (0.09) 0.98 2.71 8.28 3.06

Site2→ 1 0.85 (0.04) 0.84 (0.03) 0.51 (0.11) 0.52 (0.11) 63.67 (0.08) 62.31 (0.08) 0.98 2.27 6.92 3.05

Diameter (DBH) Combined sites 0.86 (0.03) 0.83 (0.04) 0.45 (0.06) 0.43 (0.07) 16.65 (0.14) 14.81 (0.13) 0.89 0.59 1.65 2.80

Site1 0.76 (0.08) 0.74 (0.08) 0.38 (0.15) 0.34 (0.15) 12.09 (0.10) 10.15 (0.09) 0.84 0.43 1.13 2.63

Site2 0.87 (0.02) 0.82 (0.04) 0.53 (0.05) 0.48 (0.08) 14.70 (0.13) 13.18 (0.12) 0.90 0.53 1.46 2.75

Site_mean 0.82 (0.05) 0.79 (0.06) 0.45 (0.09) 0.42 (0.11) 13.44 (0.12) 11.84 (0.10) 0.88 0.48 1.32 2.75

Site1→ 2 0.76 (0.05) 0.75 (0.05) 0.43 (0.09) 0.43 (0.10) 10.99 (0.10) 9.65 (0.08) 0.88 0.39 1.07 2.74

Site2→ 1 0.80 (0.05) 0.78 (0.05) 0.33 (0.13) 0.34 (0.12) 16.09 (0.14) 13.75 (0.12) 0.85 0.57 1.53 2.68

Microfibril anglec Combined sites 0.88 (0.03) 0.84 (0.04) 0.51 (0.11) 0.51 (0.10) −2.71 (−0.15) −2.78 (−0.15) 1.02 −0.10 −0.31 3.10

Site1 0.83 (0.06) 0.79 (0.04) 0.47 (0.15) 0.45 (0.13) −2.47 (−0.12) −2.29 (−0.11) 0.92 −0.09 −0.25 2.78

Site2 0.86 (0.04) 0.82 (0.04) 0.54 (0.16) 0.52 (0.15) −1.72 (−0.11) −1.80 (−0.12) 1.09 −0.06 −0.20 3.33

Site_mean 0.84 (0.06) 0.80 (0.05) 0.48 (0.15) 0.48 (0.14) −1.84 (−0.11) −1.80 (−0.11) 1.00 −0.07 −0.20 2.86

Site1→ 2 0.80 (0.03) 0.76 (0.04) 0.48 (0.13) 0.47 (0.12) −2.05 (−0.13) −1.95 (−0.12) 0.92 −0.07 −0.22 3.14

Site2→ 1 0.84 (0.04) 0.81 (0.04) 0.44 (0.13) 0.45 (0.11) −2.14 (−0.10) −2.16 (−0.10) 1.01 −0.08 −0.24 3.00
aGenetic gains are given in absolute values; units are kg/m3 for wood density, cm for height, mm for diameter and degrees for microfibril angle
bM/P, markers to pedigree gain ratio
cNegative genetic gain for MFA indicates trait improvement
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black spruce genome [51]. GS analyses considering
sets of markers delimited according to linkage groups
showed some differences in accuracy estimates from
one chromosome to another, but these differences
were not statistically significant (Fig. 2). At this
marker resolution, we were thus unable to identify
particular linkage groups that would control more for
a specific trait. Overall, the accuracies obtained for
the four traits were lower than those of models based
on all markers, but they were slightly higher than es-
timates for models based on an equivalently reduced
number of markers but sampled randomly across the
entire genome (see Fig. 1, random 250 SNPs). These
results suggest that relatedness is a likely strong
contributing factor to the high prediction accuracy of
GS models.



Table 3 Accuracies of genomic selection models based on half-sib families using all 4,993 markers in a combined-site analysis, thus
removing full-sib family linkage. Pedigree indicates that only pedigree information was used for predictions after model calibrations;
markers indicates that SNP information was used. The predictive ability is the correlation between the predicted and the actual
phenotypes. Genetic gains are given in absolute values and percentages are given in brackets. Gain estimates are based on predicted
phenotypes and a selection intensity of 5%. Annual gain estimates were based on assumptions of a conventional breeding cycle length
of 28 years for pedigree selection (“Pedigree”), and a shortened cycle length of 9 years for selection with markers (“Markers”), with 4 years
for crosses and production of seedlots that are full-siblings to the training population, followed by 1 year for selection of individuals using
markers and genomic selection models, and 4 years for vegetative propagation of selected individuals for seedling production

Trait Accuracy (error) Predictive ability (error) Gaina (percent) Gain ratio Gain per year Gain per year ratio

Pedigree Markers Pedigree Markers Pedigree Markers M/Pb Pedigree Markers M/Pb

Wood density 0.77 (0.14) 0.65 (0.18) 0.38 (0.16) 0.37 (0.15) 26.48 (0.06) 26.33 (0.06) 0.99 0.95 2.93 3.08

Height 0.80 (0.12) 0.76 (0.13) 0.50 (0.19) 0.49 (0.18) 78.59 (0.10) 76.70 (0.10) 0.98 2.81 8.52 3.03

Diameter (DBH) 0.64 (0.17) 0.63 (0.17) 0.30 (0.20) 0.31 (0.21) 14.41 (0.13) 12.19 (0.11) 0.85 0.51 1.35 2.65

Microfibril anglec 0.40 (0.41) 0.42 (0.28) 0.18 (0.32) 0.23 (0.25) −2.01 (−0.11) −1.97 (−0.11) 1.00 −0.07 −0.22 3.14
aGenetic gains are given in absolute values; units are kg/m3 for wood density, cm for height, mm for diameter and degrees for microfibril angle
bM/P, markers to pedigree gain ratio
cNegative genetic gain for MFA indicates trait improvement

Lenz et al. BMC Genomics  (2017) 18:335 Page 9 of 17
Sample sizes used to build genomic selection models
The effect of sample size used for GS model training was
investigated. Starting with the full set of 734 sampled trees
from both sites, we randomly removed trees and evaluated
model quality for various subsets. As expected, accuracy
of the GS models from the combined-site analysis gener-
ally decreased when fewer trees were used (Fig. 3). The re-
duction was much more important in marker-based
models compared with pedigree-based models, leading to
decay in the accuracy ratio. When considering less than a
quarter of the trees initially present in the training set,
model accuracy decreased by 50% on average. Sample sets
with 330 or more trees showed comparable or only mar-
ginally inferior model accuracy compared with the full
sample set, picking up well existing LD and relatedness.
However, when training models with this number of trees,
the accuracy of models was associated with larger errors
for wood quality traits, especially for wood density where
accuracy degraded faster and more irregularly in both
marker-based and pedigree-based models.
Similarly, errors of predicted genetic gain based on the

use of GS models increased for sample sets of 330 trees or
less. This was especially true for tree height and wood dens-
ity where the average predicted genetic gain of marker-
based models even increased slightly, when models were
based on low numbers of individuals (Fig. 4). Together with
the important loss of accuracy for both traits (Fig. 3), this
result highlights the value of a large training set leading to
precise accuracy estimates from GS models in order to
make well-grounded selection decisions.

Discussion
Accuracy of genomic selection models with complete
information
This study clearly shows that medium-dense marker
panels with several thousand markers well distributed
over the genome can be effectively used in GS to predict
additive breeding values in advanced-generation tree
breeding programs, echoing previous results in similar
settings [21, 24, 25, 33]. The accuracy of the GS models
obtained with the present black spruce breeding popula-
tion was high for both growth and wood quality traits,
reaching values of approximately 0.8 when using several
hundred trees to build the GS models. Accuracy esti-
mates from GS models were comparable with their
pedigree-based counterparts, and were superior to re-
sults obtained in white spruce for a population of full-
sib families [25]. These findings suggest that the current
marker panel was marginally more efficient than the
pedigree information in retracing family linkages (see
below), especially if some errors affected pedigree infor-
mation. These results lead to the conclusion that GS can
efficiently be applied for this boreal conifer species in
advanced-breeding programs and highly structured pop-
ulations of full-sib families, resulting in much higher
gains per year than conventional selection. Moreover,
applying a forward GS scheme at an early stage appears
possible in black spruce, given that it inherently displays
a high propensity for vegetative propagation at an early
age, as seen for other spruces [1].
The present accuracy estimates were somewhat higher

than estimates previously obtained for similar traits in
full-sib families of white spruce of similar age in a com-
parable study [25], and they were considerably higher
than accuracy estimates obtained for loblolly pine [22].
Following the simulation results of Grattapaglia and
Resende [32] and the parameters of the present study,
one would expect accuracy estimates ranging between
0.7 and 0.8 for genomic models relying on 2 to 3
markers per cM, with an effective population size close
to 30, as well as a training population set somewhat
below 1,000 individuals. The present estimates are on



Fig. 1 Accuracy of genomic selection models with reduced marker density. Accuracy estimates for subsets of markers are shown by correlations
between the genomic-predicted breeding values (x-axis) and the true breeding values (y-axis) for tree height, diameter at breast height (DBH), wood density, and
microfibril angle. Associated errors of accuracy estimates are presented in brackets. On the y-axis of the fifth row of plots, largest SNPs indicate SNPs with largest
absolute effects. On the y-axis of the sixth row of plots, remaining SNPs indicate the subset of SNPs without those 250 SNPs with largest absolute effects
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Fig. 2 Effect of linkage group on accuracy of genomic selection models. Accuracy (black circles) and associated errors for models based on markers
pertaining to the same individual linkage group. Dashed grey lines indicate the means of accuracy estimates of the 12 linkage groups; long-dashed
black lines are the accuracies of models combining all markers of known map positions (2928 markers, see Methods) and spanning the entire genome

Fig. 3 Accuracy of genomic selection models obtained using subsets of trees. Accuracy estimates for pedigree-based models (light grey line) and
marker-based models (dark line), as well as their ratio (histograms). Estimates are given with their associated standard errors
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Fig. 4 Predicted genetic gain using subsets of trees to build pedigree-based models (light grey line) and marker-based models (dark line), and the
corresponding coefficient of variation (error bars). The ratio of marker- to pedigree-predicted genetic gain is presented by histograms. Gain estimates
are based on predicted phenotypes and a selection intensity of 5%
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the upper limit or surpass these expectations, likely be-
cause of the high heritabilities observed in the present
black spruce field trial for these traits.
Overall, the accuracy estimates only showed minor

differences among traits. Model quality for tree diam-
eter was somewhat lower than that for tree height,
which is congruent with earlier reports [24, 25]. This
is most likely related to the higher heritability of tree
height compared to diameter, as often noted in coni-
fers [25, 27, 58].

Genotype-by-environment interaction
The genotype-by-environment interaction was low. Models
calibrated on one site led to good predictions of GEBVs on
the other site, indicating low genotype-by-environment in-
teractions in this test despite the contrasting site conditions
and the large geographic distribution of parental trees used
to produce the full-sib families. Low genotype-by-
environment interactions were also previously reported
from provenance-progeny tests replicated on multiple sites
in Québec [59, 60]. Similar observations of good transfer of
model accuracy among distant sites from two large breed-
ing zones in Québec were also reported for white spruce
for both half-sib and full-sib GS models [25, 26]. These re-
sults contrast with reports on hybrid spruce from western
Canada [27] and loblolly pine from the southeastern United
States [33], where the need to recalibrate GS models in
each breeding zone was shown.
Boreal spruces in eastern Canada, such as black and
white spruces, are reforested on a geographically re-
stricted land base compared to the extent of their nat-
ural distribution, at the southern edge of their natural
range where the commercial forest is mostly located.
Based on provenance-progeny tests targeting these refor-
estation areas, reduced genotype-by-environment inter-
action was noted and the reforestation sites have been
split into only a few large breeding zones [40, 60].
Furthermore, little phylogeographic structure has been
reported in the province of Québec and its vicinity for
black spruce [52, 53, 61, 62] or white spruce [63], indi-
cating a homogenous historical genetic background.
Little among-population differentiation has also been
observed with various molecular markers, indicating
limited population structuring and reflecting the
recent post-glacial recolonization in eastern Canada
[52, 53, 57, 64]. Furthermore, the parental trees
employed in the present black spruce advanced-breeding
populations were first-generation superior trees selected
in provenance tests assembling multiple provenances, well
scattered geographically beyond single breeding zones and
performing well on multiple sites. Therefore, their genetic
background may have been indirectly selected toward
generalists bearing a plastic adaptability to local condi-
tions. This study shows that models can be applied to dif-
ferent sites or be built by pooling data from different sites
without significantly compromising accuracy. From a
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practical point of view, it also means that fewer trees are
necessary to train and obtain models with good accuracy,
thus reducing phenotyping and genotyping costs for GS
model development.
The effect of size of model training set on genomic selection
accuracy
The size of the dataset employed to train models has
previously been shown to have a large effect on the ac-
curacy of GS models [32]. In advanced-breeding popula-
tions with small effective population size, we hypothesized
that a smaller number of samples per progeny should be
sufficient to obtain good model accuracy. Using resam-
pling, Perron et al. [65] reported that optimal subgroups
should include 6 to 8 trees per family and site in order to
precisely estimate genetic parameters for wood density
and growth in an open-pollinated black spruce test. Our
current finds concur with those of Perron et al. [65], as a
sizeable loss in accuracy was only observed when the
training sets were less than 330 trees, corresponding to a
minimum of about 4 trees per site and full-sib family in
the present context. One interesting observation was that
marker-based models had a tendency to loose accuracy
more quickly than their pedigree-based counterparts.
From a practical point of view, a smaller number of trees
necessary to train and obtain models with good accuracy
will help reduce the genotyping and phenotyping costs for
GS model development.
Genomic selection model accuracy and level of family
structure
Genomic selection models constructed using data from
a subset of half-sibs from the same test resulted in much
lower and more variable accuracies. However, models
built with half-sibs had higher accuracies than those
from previous reports similarly derived from half-sib
families of eastern white spruce or western hybrid
spruce in Canada [26, 28]. The difference is likely due to
the low effective population size of half-sibs in the
present study, leading to a higher level of relatedness
among trees in the training and validation sets compared
to true open-pollinated families where a large number of
mostly unrelated pollen donors intervene and greatly in-
crease the effective population size [26].
The shift in accuracy and predicted genetic gain ob-

served between using half-sib versus full-sib sets further
highlights that GS is most efficiently applied in more
structured populations where relatedness and LD are
higher, which necessitates less genome coverage to attain
high prediction accuracy. Similar observations were re-
ported by Beaulieu et al. [25, 26] and Zapata-Valenzula
et al. [21]. Below, we discuss additional evidence to sup-
port this interpretation.
A limited role for short-range LD in genomic prediction
The main obstacles for the application of MAS in largely
undomesticated populations of conifers are their large
genome sizes often exceeding 20 Gbp [66] and their low
LD [35, 36], which in turn would require very high gen-
ome coverage in order to pick-up short-range marker-
QTL LD and make accurate predictions; this, besides
the multigenic control of most relevant traits was
already identified as a drawback in association studies
[5–7] where single markers explained only a low percent
of variance. In this context, the role of short-range
marker-QTL LD in the accuracy of GS models obtained
with moderate genome coverage appears negligible. In
the present study, a density of approximately 2.7
markers/cM was used, which resulted in GS model ac-
curacy roughly equivalent to that from pedigree-based
models. The same trend was also observed in previous
studies [25, 26]. GS model accuracy decreased signifi-
cantly when using half-sibs instead of full-sibs, which is
consistent with the trend seen from other studies dis-
playing similar genome coverage [25–27]. Using only
markers with large effects resulted in marginally better
model accuracies compared to those obtained with same
number of markers randomly picked. However, we
showed that this aspect is entangled with higher average
MAF values for these markers. Also, the non-significant
differences among model accuracies obtained with
markers from different chromosomes likely indicates
that limited short-range marker-QTL LD could be
traced. Altogether, these observations point to related-
ness and an increasing size of un-recombined chromo-
some blocks as the main drivers of GS model accuracy.
Relatedness and the ability to retrace family linkages
should be seen as the key factors for the high accuracies
obtained, given that restricting GS model building with
markers from single chromosomes led to somewhat
higher accuracies compared to models relying on an
equivalent random sample of markers covering all 12
spruce chromosomes. This trend is further supported by
the fact that increasing the number of markers used to
build GS models tenfold (from 500 to 4,993 markers)
only led to incremental, though useful, improvements in
model accuracy.
These observations are further supported by the fact

that when GS models were applied to trees from families
not included during model building, little or no accuracy
was obtained, further confirming the limited role of
short-range LD in the high accuracies obtained when
using full-sibs. These results are not surprising given
that black spruce and most conifers are essentially un-
domesticated, outbreed, wind-pollinated organisms with
large effective population sizes, hence lacking population-
wide LD. For instance, LD decays rather rapidly in natural
populations of spruces and pines, usually well within gene
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limits and in many cases, within a few hundred base pairs,
which is a likely consequence of historically large effective
population sizes [35, 36]. Consequently, our results and
those of others (e.g. [22, 23]) suggest that genomic predic-
tion may not be possible for unrelated individuals at
current marker densities.
A corollary is that obtaining GS model accuracy be-

yond that of pedigree-based models would likely necessi-
tate increasing genome coverage by a factor of at least
10X to 100X of that used herein, resulting in the use of
a very large number of markers, likely in the hundreds
of thousands. Simulations and historical data in cattle
led to the conclusion that 50k markers would allow for
the capture of causal loci within breeds, but 300k
markers would be needed for accurate prediction across
breeds [67]. A similar trend is emerging for crop plants,
with the preparation of genotyping arrays containing
over half a million SNPs (e.g. McCouch C. et al., Inter-
national Rice Consortium, in preparation). Furthermore,
based on simulations, Grattapaglia and Resende [32]
showed that increasing genome coverage tenfold from
1–2 markers/cM to 10–20 markers/cM only asymptotic-
ally improves GS model accuracy.
The fact that slightly higher GS model accuracy was

obtained with models using only markers with largest
effects (top 250 out of 4,993 markers), compared to
models estimated with all markers, could imply that part
of the short-range LD can be picked-up by the GS
models when a reduced numbers of large-effect markers
are employed. However, there could be confounding fac-
tors, such as the a priori information value of markers.
Indeed, a significantly higher average value of minimum
allele frequency (MAF) was observed for markers with
largest effects. Such markers could track family linkages
more effectively than random markers, especially when
small numbers of markers are used. Also, the marginally
higher accuracy achieved with markers located on a spe-
cific chromosome compared to same number of markers
but spread over the entire genome indicate that a better
tracking of family linkages is achieved when a small
number of markers are located on the same chromo-
some. Thus, this factor could also be potentially use-
ful to reduce genotyping and GS costs in highly
structured populations when the genome location of
markers is known.

Conclusions
The results of the present study on black spruce indicate
that, at least in the short term, GS holds substantial
promises for efficient application in populations of small
effective size, such as advanced-breeding populations.
With the scale of marker densities usually employed (at
a rate of a few markers per cM), the overall short-range
LD between markers and causal loci is likely not sufficiently
well captured to make GS efficient in largely unstructured
natural populations of conifers or between unrelated breed-
ing populations. In small and structured populations, we
show that prediction accuracy is null when relatedness be-
tween training and testing data sets is absent. Marker dens-
ities of one or several orders of magnitude higher would
likely be necessary to improve accuracy in such conditions.
Thus, high relatedness between individuals appears to be a
prerequisite to obtain highly accurate GEBVs.
From an applied point of view, lowering marker dens-

ities may be feasible without major loss in accuracy in
order to reduce genotyping costs. Information relative to
relatedness would be more precise when markers are lo-
cated on a single chromosome instead of spreading an
equivalent number of markers over the whole genome,
and with using markers with highest MAF. These ap-
proaches may be considered when a reduced genotyping
assay is needed.
Based on the present results, the GS application with

highest potential for spruce breeders would be to select
with high accuracy superior individuals within a group
of full-sib families. This would effectively increase the
relatedness as well as the size of unrecombined chromo-
some blocks generated by controlled crossing in a small
breeding population. One obvious beneficial implemen-
tation of GS in such a context would be to repeat the
controlled crosses that were used to build the GS models
to generate much larger full-sib families and thus, apply
higher selection intensities and obtain larger genetic
gains. Future studies also need to evaluate to which ex-
tent genomic selection models developed for the present
generation could be applied to the next generation of
progeny, as recombination should break up some of the
established linkage [23]. However, given the good accur-
acy of GS models that we obtained when considering in-
dividuals sharing only one parent, we hypothesize that
predictions in a following generation may be relatively
accurate when sharing the same parental material. Also,
because family linkages could be efficiently traced with
genomic profiles, polycross strategies could likely be
used without losing significantly on prediction accuracy,
where male pollen donors are mixed so to reduce the
cost of crosses. Such screening of larger families from
polycross would make it possible to increase selection
intensity and the ensuing genetic gain in a cost-effective
fashion, especially for traits such as wood quality param-
eters or pest resistance, which are expensive and cum-
bersome to assess on large test populations. Thus,
candidate individuals for selection would only have to be
genotyped at the early seedling stage and those having
the highest GEBVs predicted using the available GS
models would be selected.
For species amenable to vegetative propagation and for

organizations having access to somatic embryogenesis
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and/or rooted cutting facilities, as it is the case in eastern
Canada for spruces, individuals identified with GS at the
early seedling stage could also be propagated and mass-
produced for reforestation programs within only a few
years [1]. With such a forward selection scheme, the
breeding and production cycles could be significantly re-
duced and gain per time unit would be multiplied by a fac-
tor of 3 (Table 2). Other schemes based on sexual
reproduction could be deployed, such as top-grafting of
selected progeny in previous generation seed orchards
followed by polymix crossing, which would facilitate the
production of genetically improved seeds with minimal
delays. At the same time and by shortening quite drastic-
ally the breeding cycles for slow-growing species such as
temperate and boreal conifers, the use of GS tools should
result in more flexibility to tree breeders, which appears
especially important in the context of rapid environmental
changes and evolution of wood products markets.
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