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Abstract

Background: Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important
conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that
should sustain the development of genomic tools for the conservation of natural and domesticated genetic
diversity resources, and hasten tree breeding efforts in this species.

Results: Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the
sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a
high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771
high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed
for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000
trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping
success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP
abundance across various gene functional categories. Several GO terms and gene families involved in stress
response were found over-represented in highly polymorphic genes.

Conclusion: The annotated high-confidence SNP catalog developed herein represents a valuable genomic
resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve
a variety of population genomics and breeding applications in Norway spruce.

Keywords: Conifer, Exome sequencing, Annotated gene SNPs, Illumina Infinium iSelect array, Illumina MiSeq, Picea
abies, Single nucleotide polymorphism, SNP abundance

Background
Giant leaps have been made recently regarding the se-
quencing of spruce genomes, resulting in the release of
draft genome sequence assemblies for Picea abies
(Norway spruce) and Picea glauca (white spruce) [1–3].
However, owing to the huge size (∼ 20 Gb) and highly re-
petitive content of spruce genomes, these sequences

remain largely fragmented and not suited to develop reli-
able population genomic tools [4]. Hence, strategies aim-
ing to reduce genome complexity have been deployed in
order to sustain the development of such tools in spruces.
During the last decade, most resequencing efforts focused
on the gene space, using approaches such as cDNA and
EST sequencing, RNA-Seq, or exome sequencing to de-
velop genomic resources [4].
The recent advent of high-throughput technologies for

the detection and genotyping of single nucleotide poly-
morphisms (SNPs) has led to a revolution in their use as
reliable molecular markers in spruce population genomics.
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Because of their abundance in spruce exomes, and on-
going reduction in sequencing and genotyping costs, gene
SNPs have been used in a vast array of spruce genomic ap-
plications, including gene and QTL mapping (e.g. [5–9]),
genomic selection (e.g. [10–13]), association mapping and
ecological genomic studies (e.g. [6, 14–25]), the manage-
ment of genetic diversity, and for traceability applications
[15, 26–29]. One central feature of spruce gene SNPs is
that they are informed markers, given the availability of
high-confidence annotated spruce gene catalogs (e.g.
[30]), of dense genetic maps including thousands of genes
[7, 9], and of large annotated gene expression databases
[31, 32]. Moreover, spruce genomes harbor highly syntenic
and collinear macrostructures [33–35], thus allowing the
transfer of structural information among congeners.
SNP discovery through resequencing and bioinformatic

screening has been shown to be efficient to identify large
sets of reliable SNPs in transcribed genes [36, 37]. In
conifers, these SNPs were usually validated by genotyping
subsets of predicted SNPs and assessing their true positive
rate with high-density genotyping arrays [26, 38–41]. In
spruces, the first extensive gene SNP catalog was devel-
oped for P. glauca from cDNA sequencing and expressed
sequence tags (ESTs) [42]. It first included ~ 12 K
high-confidence nonsingleton SNPs encompassing ~ 6.5 K
genes [42], which was further extended to ~ 212 K
high-confidence nonsingleton SNPs in ~ 13.5 K expressed
genes with a true positive rate of 92% [27]. Exome se-
quencing is another efficient approach to identify gene
SNPs in non-model species with large genomes such as
spruces [3, 43]. This approach was successfully used in
black spruce (Picea mariana) to generate a catalog of
~ 97 K high-confidence SNPs encompassing ~ 15 K
genes with true positive rate of 96% [41]. In Norway
spruce, two SNP resources have been published to date,
but their annotation was rather limited and their true
positive rate has not been estimated yet [44, 45].
Along with black spruce and white spruce, Norway

spruce is ecologically and economically one of the most
important conifers worldwide. It is therefore the subject
of important tree breeding efforts in various jurisdic-
tions in Europe [46]. While Norway spruce is originally
native from Europe, it was introduced in eastern
Canada and northeastern United-States early on in the
twentieth Century for the production of lumber, pulp
and paper [47]. In the province of Québec, Norway
spruce is currently the most productive spruce species
[48] and more than 200 million Norway spruce seed-
lings have been planted since 1968 [49]. Due to its high
wood quality, the current demand for Norway spruce
seedlings in Eastern Canada is substantial, with nearly
10 millions reforested seedlings per year in Québec,
New Brunswick and Nova Scotia [49, G. Adams, J.D. Ir-
ving Ltd., personal communication). Accordingly,

conventional breeding programs have been set up for
Norway spruce in Canada (e.g. [49]). In addition, genomic
approaches applied to P. abies have also been successfully
deployed in Europe in order to gain insight into genomic
architecture and evolutionary genetics (e.g. [7, 18]). These
genomic approaches mainly relied on markers originally
developed in P. glauca, as P. glauca and P. abies gene
SNPs were shown to be partly shared by incomplete
lineage sorting [50]. Indeed, a survey of ~ 15 K gene SNPs
showed that at least 12% of P. glauca SNPs were also
found in P. abies [27]; hence, hundreds of P. glauca SNPs
were used to help build early on high throughput genotyp-
ing arrays for P. abies [7, 18]. However, larger arrays of
markers need to be interrogated repeatedly in an efficient
and uniform way to apply large-scale genomic approaches
such as genome-wide association studies (GWAS) or gen-
omic selection (GS). Therefore, developing large anno-
tated and reliable SNP resources specific to Norway
spruce appears necessary. Such resource would also be
useful to validate data that may be obtained in the future
by genotyping-by-sequencing (GbS) approaches, and fur-
ther increase the number of markers suited for diverse
population genomic applications.
Our primary goals were to generate a catalog of anno-

tated high-confidence SNPs covering much of the exome
of P. abies, and to evaluate the true positive rate for a sub-
set of predicted SNPs using a genotyping array. Given that
success rate is usually high when applying exome capture
probes to congeneric species [41, 43, 51, 52], we relied on
a large set of probes that were successfully transferred
from P. glauca to P. mariana in a previous study [41]. We
also used the SNP resource developed herein to survey
nucleotide polymorphism through a large part of the P.
abies exome and identify gene ontologies (GO) and gene
families with highest SNP abundance as a proxy for gen-
etic diversity of potential adaptive significance for future
studies.

Results
Exome capture and sequencing, de novo assembly, and
pairwise sequence comparisons
After the liquid-phase capture, Illumina MiSeq se-
quencing generated two ~ 300-bp paired-end se-
quences per captured insert, ending with 45,749,646
sequences (Fig. 1). The assembly process resulted in
41,147 de novo contigs longer than 500 bp (average
length of 1036 bp). Out of them, 24,273 contigs (aver-
age length of 1087 bp) matched our coverage criteria
and were paired with 16,516 P. glauca genes (69.7% of
the targeted genes) with which they shared at least
95% of identity. On average, 1.47 contigs overlapped
each of the 16,516 genes (min 1 - max 17 contigs/
gene). Given that the P. abies exome capture was con-
ducted with P. glauca probes, the success of the
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approach depended mainly on the degree of sequence
identity between species.

SNP detection and distribution
BWA mapped about 18.5 millions of captured sequences
against the paired homologous contigs (Fig. 1). PLATYPUS
detected 137,534 variants (comprising multiple nucleotide
polymorphisms (MNP), including 115,336 SNPs. The GS
REFERENCE MAPPER mapped about 14 millions of cap-
tured sequences against the paired homologous contigs and
produced 192,449 polymorphisms (comprising MNP) in-
cluding 191,334 SNPs (Fig. 1). We found 238,666 SNPs that
were not in the intersection of the data generated by both
PLATYPUS and GS REFERENCE MAPPER but were de-
tected by either of the two softwares, but also 68,004 SNPs
predicted simultaneously by the two methods, that repre-
sented roughly 60% and 35% of the SNP datasets predicted
by PLATYPUS and GS REFERENCE MAPPER, respect-
ively. Out of them, 61,771 SNPs met the in-house quality
filters (detailed in Methods) and consisted in the P. abies
high-confidence SNP resource (Additional file 1). These
SNPs were all non-singletons with an average depth of 183
(median = 103) and an average minor allele fre-
quency (MAF) of 0.31 (median = 0.32). The 61,771 SNPs
were distributed among 18,587 contigs, representing 13,543

P. glauca-homolog SNPed genes [30], for an average of
4.56 SNPs per SNPed gene. Among the 16,516 P. abies
genes uniquely matched to the GCAT3.3 P. glauca gene
catalog, 2973 (18%) had no high-confidence SNPs. These
genes are technically qualified as unSNPed in the limits of
the present study and criteria used to retain only
high-confidence SNPs. When these were considered with
SNPed genes, an average of 3.74 SNPs per gene was ob-
tained. The SNP abundance was 0.234 SNP per 100 sites or
one SNP per 427 sites, when considering the 13,543 SNPed
genes only. When the total of 16,516 genes including
2973 unSNPed genes was considered, the corresponding
numbers were 0.219 SNP per 100 sites and one SNP per
457 sites.
Because of the high synteny and collinearity among

Pinaceae and especially among spruce genomes [9, 33–35,
53], a proxy for the genomic position of 5391 P. abies
genes was used by determining the position of their P.
glauca homologs on the recently augmented P. glauca
genetic map [9] (Additional file 1). These 5391 genes were
largely spread on the 12 chromosomes of P. glauca. Given
that the number of genes is quite homogeneous across the
12 spruce chromosomes [53, 54], the 12 P. abies chromo-
somes appear all well represented in the present SNP
catalog.

Fig. 1 Pipeline for exome capture and sequencing, sequence assembly and SNP discovery. 1 [30]. 2 [93]. 3 [94]. 4454 Life Science, Branford,
CT.5 See Methods for details
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Validating the SNP resource with a genotyping array
Out of the 6000 SNPs selected to construct the SNP
genotyping array, 5660 (94.3%) were successfully manu-
factured (Additional file 2), whereas the Illumina probe
synthesis failed for the remaining 340 SNPs (5.6%),
which is well within previously reported rates of manu-
facture failure [27, 39, 40]. The 5660 successfully manu-
factured SNPs included 5571 predicted SNPs from
exome sequencing and 89 control SNPs used success-
fully for genotyping in previous SNP arrays. From the
initial number of 5660 SNPs successfully manufactured,
4768 were deemed valid, corresponding to an overall
success rate of 84.2% (Table 1), and representing as
many distinct genes with annotated homologs in the P.
glauca catalog of transcribed genes [30]. All 4768 SNPs
had a call rate ≥ 80%, and the average call rate was
99.3%. According to the two positive controls included
on each genotyping plate, the internal reproducibility of
the SNP array was estimated at 99.94%. The success rate
for the control SNPs recycled from previous white
spruce SNP genotyping arrays reached 85.4%, which was
only slightly higher than that of newly predicted Norway
spruce SNPs (true positive rate = 84.2%; Table 1). Out
of the 892 failed SNPs, 310 SNPs were monomorphic
(all individuals clustered in a single homozygous
class), 508 SNPs resulted from probes likely annealing
to paralogous loci (Fe ≥ 0.80), and 74 SNPs showed no
clear clustering in two or three expected genotypic
classes or weak signal intensity. The rate of failed
SNPs was also comparable between control and predicted
SNPs (Table 1).

Distribution of SNP abundance across gene functional
categories
Because observed values of SNP abundance were corre-
lated with sequencing depth, we estimated for each con-
tig the β parameter which corrects for this bias (see
Methods). We then used this parameter to compare

SNP abundance among the 16,516 genes carrying
high-confidence SNPs. The distribution of β values was
right-skewed with fewer genes harboring high SNP
abundance (Fig. 2). We looked at the annotations of the
30 most SNPed genes, those harboring the highest β
values of SNP abundance (Additional file 3). As a gen-
eral trend, this subset of genes was characterized by
high functional diversity. Notably, it encompassed
seven plant disease resistance genes involved in stress re-
sponse to biotic and abiotic stresses: a phytanoyl-CoA
dioxygenase gene, two genes encoding cell wall-degrading
enzymes, a gene encoding the 26S proteasome, a gene
belonging to the Leucine Rich Repeat family, an UDP-
glycosyltransferase gene and a heat shock protein
class III gene.
Functional annotations (GO terms, gene families, or-

phans, and conifer-specific genes) of the 10% most SNPed
genes (those with highest β values) were then compared
with those of the remaining dataset. Across GO terms, 10
Molecular Functions (MF), 15 Biological Processes (BP)
and 5 Cellular Components (CC) were significantly
enriched in the highly polymorphic gene subset (P < 0.05)
(Table 2). The most significant (P < 0.01) MF were endori-
bonuclease activity and hydrolase activity; the most signifi-
cant BP were alcohol metabolic process, response to
insect, and ER to Golgi vesicle-mediated transport; and
the most significant CC were plant-type vacuole mem-
brane, cell wall, and anchored component of membrane
(Table 2). Additional file 4, which illustrates the hierarch-
ical relationships among these significant GO terms,
highlighted an interesting pattern within the MF category.
Indeed, three general terms were significantly enriched
(namely transferase activity, hydrolase activity, and oxido-
reductase activity), and all of them were grouped under
the umbrella « catalytic activity » (Additional file 4: Figure
S1). In addition, hydrolase activity also included three
significantly enriched terms: aspartyl esterase activity, pec-
tinesterase activity and endoribonuclease activity.

Table 1 Genotyping success rate of the Picea abies Infinium SNP array and true positive rate according to sources of SNPs

Source of SNPs Number of
successfully
manufactured
SNPs

Segregating SNPs Failed SNPs

Number of
segregating
SNPs

Genotyping success
rate/true positive
ratea

Number of
monomorphic
SNPs

Number of
paralogous
SNPsc

Number of other
non-segregating
SNPsd

Total
number

Control SNPs recycled
from previous
genotyping arrays

89 76 85.4% 6 4 3 13 (14.6%)

Newly predicted SNPsb

from exome capture
and sequencing

5571 4692 84.2% 304 504 71 879 (15.8%)

Total 5660 4768 84.2% 310 508 74 892 (15.8%)
aGenotyping success rate for control SNPs, and true positive rate for newly discovered SNPs from exome capture and sequencing
bSNPs identified among the 61,771 SNPs predicted by both PLATYPUS and GS REFERENCE MAPPER and satisfying the quality filters detailed in Materials
and Methods
cParalogous SNPs, those with high excess of heterozygotes with Fe ≥ 0.80
dOther non-segregating SNPs, those showing no clear clustering in two or three expected genotypic classes, or showing weak signal intensity
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After correction for multiple testing, none of the 69
gene families tested appeared differentially distributed be-
tween the 10% most SNPed genes and the rest of the data-
set. However, based on uncorrected p-values, 16 families
were significantly more represented within the most
SNPed genes (5 families being significant at P < 0.01 and
11 others at P < 0.05) (Fig. 3). Notably, 7 out of these 16
gene families appeared involved in response to biotic or
abiotic stresses based on annotations retrieved from the
ConGenIE database.
Conifer-specific genes were significantly more repre-

sented in the 10% most SNPed genes (7.5%) than in
other genes (5.3%) (Fisher’s exact test, P = 0.007), but no
significant enrichment was observed for orphans (1.5
and 2.3%, respectively) (Fisher’s exact test, P = 0.06).

Discussion
De novo exome reference assembly and SNP detection
Using P. glauca probes for P. abies exome capture, the
target recovery rate obtained (74.5%) was comparable to
that previously obtained for P. mariana (75.9%) using
the same set of probes [40]. When discarding contigs
with extremely high or low coverage (see Methods), the
final recovery rate (69.7%) was slightly lower, but it re-
mains high considering the size and complexity of the
Picea genome, and that the capture tool was originally
designed on a phylogenetically distant species, P. glauca
[50, 55].
The P. abies SNP resource developed herein includes

61,771 high-confidence SNPs distributed over 13,543
genes, which represent almost half of the predicted genes
from genome sequencing [2]. While the number of genes
represented in this resource is comparable to that

obtained in P. mariana using a similar approach (14,909
genes) [40], the number of predicted high-confidence
SNPs was smaller. This trend was expected because the
number of trees used (10) for exome capture/sequencing
and ensuing discovery of SNPs was smaller than that used
previously in P. mariana (44). Hence, it is likely that SNPs
with low MAF in natural populations were not well

Fig. 2 Distribution of SNP abundance across genes. β is the
computed SNP abundance parameter correcting for variable
sequencing depth among genes, which was used to compare SNP
abundance among them

Table 2 GO terms significantly enriched among the 10% genes
with highest SNP abundance following Fisher's exact tests

GO ID Term p-value

Molecular function

GO: 0004521 Endoribonuclease activity 0.0029

GO: 0016787 Hydrolase activity 0.0096

GO: 0016229 Steroid dehydrogenase activity 0.0106

GO: 00016757 Transferase activity, transferring
glycosyl groups

0.0120

GO: 0045330 Aspartyl esterase activity 0.0157

GO: 0015299 Solute: proton antiporter activity 0.0157

GO: 0015491 Cation: cation antiporter activity 0.0174

GO: 0005507 Copper ion binding 0.0229

GO: 0030599 Pectinesterase activity 0.0277

GO: 0016491 Oxidoreductase activity 0.0409

Biological process

GO: 0006066 Alcohol metabolic process 0.0026

GO: 0009625 Response to insect 0.0053

GO: 0006888 ER to Golgi vesicle-mediated transport 0.0081

GO: 0007049 Cell cycle 0.0190

GO: 0015804 Neutral amino acid transport 0.0217

GO: 0015980 Energy derivation by oxidation of
organic compounds

0.0222

GO: 0010351 Lithium ion transport 0.0225

GO: 0006364 rRNA processing 0.0247

GO: 0010015 Root morphogenesis 0.0277

GO: 0009718 Anthocyanin-containing coumpound
biosynthetic process

0.0294

GO: 0006820 Anion transport 0.0400

GO: 0009962 Regulation of flavonoid biosynthetic
process

0.0409

GO: 0046189 Phenol-containing compound
biosynthetic process

0.0411

GO: 0016458 Gene silencing 0.0422

GO: 0043269 Regulation of ion transport 0.0460

Cellular component

GO: 0009705 Plant-type vacuole membrane 0.00082

GO: 0005618 Cell wall 0.00495

GO: 0031225 Anchored component of membrane 0.00786

GO: 0009504 Cell plate 0.02325

GO: 0010319 stromule 0.04399
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represented in our sampling. However, these SNPs are less
informative for most common genomic applications
(e.g. genomic selection, landscape genomics, association
mapping) [54].

Validating the SNP resource with a genotyping array
The true positive rate obtained for P. abies predicted
SNPs (84.2%) was lower than that of P. mariana (96.3%)
[40] and P. glauca (92.1%) [26], but higher than that
reported for Pseudotsuga menziesii (72.5%) [39], using
the same genotyping platform. However, the true posi-
tive rate of predicted SNPs (84.2%) was only marginally
lower than the genotyping success of P. abies control
SNPs recycled from previous genotyping arrays (85.4%),
suggesting that the SNP discovery pipeline was reliable,
and that much of the failure rate could be attributable to
the genotyping assay. Indeed, the genotyping success
rate of control SNPs reported herein was marginally
lower than that obtained with previous Infinium geno-
typing arrays for various spruce species (e.g. 96.7% for P.
mariana [40]; between 90.7% and 95.4% for P. glauca
[28]). The main difference between the present and pre-
vious studies is that the validation of predicted P. abies
SNPs relied on a large pre-manufactured maize Infinium
iSelect array, rather than a custom-made Infinium iSe-
lect array for spruce-only SNPs. Thus, it is possible that

a number of non-specific maize probes hybridized par-
tially to spruce loci (and vice versa) and increased the
failure rate of both predicted and control spruce SNPs.
This observation is supported by the fact that a majority
of failed control SNPs (7 out of 13, see Table 1) showed
segregating patterns indicative of differential probe
hybridization efficiency and specificity (i.e. probes anneal-
ing to paralogous sequences, or to sequences carrying
additional polymorphisms [56]). The remaining failed
control SNPs were monomorphic, which could indicate
true monomorphism in the breeding population used for
SNP validation.

SNP abundance across enriched functional categories
A variety of GO terms and gene families significantly
over-represented among the 10% most SNPed genes ap-
peared to be related to stress response, and thus, of par-
ticular interest for future population genomic
investigations. Within molecular functions, hydrolases,
oxidoreductases and transferases were the most repre-
sented enzymes, in line with the results of a large-scale
climate adaptation study in white spruce [23]. In
addition to the general GO term hydrolase activity, hy-
drolases comprised three specific GO terms that were
significantly enriched among the 10% most SNPed
genes: endoribonuclease, aspartyl esterase, and

Fig. 3 Differential representation of gene families among the 10% most SNPed genes versus the other genes. The 16 families found differentially
represented after Fisher’s exact test (P < 0.05) are represented; the stars (*) indicate the statistically most significant differences (P < 0.01). Gene family
identifiers were retrieved from the ConGenIE database (http://www.congenie.org)
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pectinesterase, which all include genes generally related
to stress response. For instance, the GO term endoribo-
nuclease activity was shown to be related to defense re-
sponse against a variety of pests in rice [57], while
pectinesterase was reportedly involved in defense re-
sponses against pathogens [58] and leaf senescence in rice
[59]. The aspartyl esterase GO term includes a dicer-like
protein encoded gene associated with epigenetic regula-
tion and RNA-mediated gene silencing in plants under en-
vironmental stresses [60]. High-throughput sequencing of
small RNA sequences in Pinus contorta also revealed the
presence of a novel dicer-like family specific to conifers,
and responsible for changes in small RNA expression [61].
In Norway spruce specifically, the dicer-like genes
PaDCL1 and PaDCL2 were found differentially expressed
in families produced under contrasted embryogenesis
temperature / photoperiod conditions, suggesting the in-
volvement of these genes in epigenetic regulation of
spruce development [62].
Other lines of evidence supported hydrolase-encoding

genes as potent candidates for population genomic
investigations in relation to adaptation. For instance, the
alpha/beta hydrolase family was found over-represented
in the 10% most SNPed genes (Fig. 3), while this gene
family was reported to be involved in adaptation to salin-
ity stress in Thellungiella, a plant closely related to Arabi-
dopsis [63]. In addition, three hydrolase-encoding genes
were found among the ten most polymorphic genes (Add-
itional file 3). Among them, two genes encoding cell
wall-degrading enzymes belonged to the glycosyl hydro-
lase family [64], a gene family previously reported as
highly polymorphic in P. glauca [26] and P. abies [65]. A
gene encoding a hydrolase protein was also reported as a
top candidate for local adaptation in a study investigating
convergent adaptation in lodgepole pine (Pinus contorta)
and interior spruce (P. glauca × P. engelmannii) [24].
Along with hydrolases, transferases were the most rep-

resented enzymes, in agreement with the results of a cli-
mate association study conducted in P. glauca [23]. For
instance, the GO term transferase activity - transferring
glycosyl groups was over-represented among the 10%
most SNPed genes (Fig. 3), as well as genes belonging to
the large family glycosyl transferase gene family 1. Glyco-
syl transferases are thought to play important roles in
plant defense responses to stress by glycosylating second-
ary metabolites [66]. Accordingly, the GO term transferase
activity - transferring glycosyl groups was previously
shown to include genes associated with drought stress in
wheat [67], while the glycosyl transferase gene family 1
was previously reported as over-represented in genes
under diversifying selection in P. abies and P. glauca [65],
and is involved in response to Fusarium infection in wild
potato [68] and wheat [69]. Similarly, a gene belonging to
the same glycosyl transferase family 1 cited above was

found among the 30 most polymorphic genes in the
present study (Additional file 3). In addition to glycosyl
transferases, genes belonging to methyltransferases also ap-
peared highly polymorphic. For instance, the second most
SNPed gene across our dataset (Additional file 3) was a
transferase encoding an S-adenosylmethionine-dependent
methyltransferase, which was reportedly involved in oxida-
tive stress in the ascomycete Podospora anserina [70]. The
involvement of methyltransferase genes in local adaptation
pathways has also been reported in lodgepole pine and in-
terior spruce [24].
In addition to the general GO term oxidoreductase

activity, the GO term steroid dehydrogenase activity,
which groups under the umbrella “oxidoreductase ac-
tivity”, was found enriched in the 10% most SNPed
genes (Additional file 4). While oxidoreductase activity
includes an array of genes involved in stress response,
steroid dehydrogenase activity was associated to genes
involved in environmental interactions such as defense
against biotic agents and adaptation to abiotic stresses
[71]. We also found a glutamate dehydrogenase gene
among the 30 most polymorphic genes (Additional file
3), which was shown to be up-regulated in Arabidopsis
thaliana under stress conditions [72].
Among the 10% most SNPed genes, the most signifi-

cant enriched biological processes was alcohol metabolic
process, which includes genes shown to be involved in
salt stress in chickpea [73]. The second most significant
biological process was response to insect, which is dir-
ectly related to biotic stress response.
Several other gene families and genes involved in

stress response showed high level of polymorphism in
our dataset, although they were not associated signifi-
cantly with specific GO terms. For instance, the leucine
rich repeat (LRR) and protein kinases gene families were
over-represented in the 10% most SNPed genes (Fig. 3),
in line with results from previous studies in spruces [23,
24, 65]. A LRR gene was also found among the 30 most
polymorphic genes (Additional file 3), while high SNP
abundance in NBS-LRR genes has been previously ob-
served across different plant genomes [74–79]. In
addition, genes coding for heat shock proteins (HSP)
were well represented among the 10% most SNPed
genes. These genes likely represent good candidates for
population genomics studies in relation to adaptation, as
they play a crucial role in protecting plants against abi-
otic stresses [80]. Their involvement in local adaptation
pathways was suggested for lodgepole pine and interior
spruce [24]. Two gene families, the HSP40/DnaJ chap-
erones and the Hsp20/alpha crystalline family, were
over-represented in the 10% most SNPed genes (Fig. 3),
and a HSP class III gene belonging to the Hsp20/alpha
crystalline family was also found among the 30 most
SNPed genes (Additional file 3). Both HSP families
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were reported as highly polymorphic in Picea sitchensis
[81], and the Hsp20/alpha crystalline family was also
found highly polymorphic in P. glauca [26]. Finally, the
most SNPed gene across the whole dataset was found
to encode a Phytanoyl-CoA dioxygenase (Additional file
3), which was previously shown to be involved in the
electron transfer in Eucalyptus resistance response
against Cylindrocladium [82].
Plant response to biotic and abiotic stresses is expected

to by tightly linked to the adaptive potential of individuals
in natural populations [83]. This is especially true for
long-lived plants with long generation times, such as
spruces, that have to cope with a range of changing envir-
onmental conditions throughout their life cycle before
even reaching sexual maturity. In such situation, high
levels of genetic polymorphism may likely indicate the ac-
tion of diversifying selection. Hence, the observed distri-
bution of genetic polymorphisms across functional gene
categories should be useful to identify candidate genes
and gene families for future population genomic studies in
relation to adaptation.

Conclusion
This work demonstrates the efficiency of exome capture
combined with Illumina MiSeq sequencing to generate a
robust gene sequence assembly and a catalog of anno-
tated high-confidence gene SNPs in a species with a chal-
lenging large genome. This catalog represents a valuable
genomic resource, being representative of over 13 K genes
distributed across the P. abies genome. It will be helpful to
validate data obtained from GbS and should serve a var-
iety of population genomic studies and breeding applica-
tions in Norway spruce. Because of SNP and gene
annotations, it should also facilitate comparative genome
mapping, association mapping and landscape genomic
studies with other spruce and conifer species.

Methods
Plant material and DNA extractions for exome capture
Fresh needles were collected from 10 Norway spruce
(Picea abies [L.] Karst.) grafted trees sampled in a
27-year old breeding orchard located north of Quebec
City (Natural Resources Canada). All trees originated
from central Europe, six of them being representative of
distinct natural populations from Poland (3), Belorussia
(1), and Latvia (2), and the four remaining ones being of
unknown location. No permit was required to collect tis-
sue in any location sampled in this study. DNA was iso-
lated from needles using the Qiagen DNeasy Plant Mini
Kit (Mississauga, ON, Canada) and quantified using the
PicoGreen fluorescent dye (Invitrogen). Afterward, DNA
samples were assembled in two pools of five individuals
with equimolar concentrations [84]. In order to generate
a reference sequence assembly with minimum genetic

polymorphism, DNA was also extracted from a haploid
megagametophyte, followed by whole-genome amplifica-
tion using the WGA2 kit (Sigma-Aldrich, Oakville, ON,
Canada).

Probe design for exome capture, target enrichment and
sequencing
Probes were designed from P. glauca transcriptome se-
quences [30] and were already used successfully under
an exome capture framework on P. glauca [85] and P.
mariana [40]. About 20 probes ranging from 50 to 105
nucleotides were designed for each transcript with each
base being covered by two probes on average [40]. To
capture their P. abies homologs on the two DNA pools
and the haploid megagametophyte described above
(Fig. 1), we used a liquid-phase capture (SeqCap EZ de-
veloper, IRN 6089042357, OID35086, Roche Nimblegen)
that targeted 23,684 genes (0.5M probes), followed by an
Illumina MiSeq paired-end sequencing. MiSeq was used
because it generates relatively long reads (300 bp). For
each pool and the megagametophyte, one microgram of
DNA was used to prepare TruSeq gDNA libraries
(Illumina, San Diego, CA) according to the manufacturer’s
instructions. Libraries (600-bp mean insert size) were
amplified by ligation-mediated PCR using platform spe-
cific primers, as described in the NimbleGen SeqCap EZ
Library LR User’s guide (Roche NimbleGen, Madison,
Wisconsin). Emulsion PCR and MiSeq sequencing were
performed according to manufacturer’s instructions at the
sequencing platform of the Institute for Integrative
Systems Biology (Univ. Laval, Québec, Canada).

De novo exome reference assembly and pairwise
sequence comparisons
All paired megagametophyte reads were submitted to a de
novo assembly by using the A5 assembler software [86]
with default parameters (minimum read length = 35 bp
and k-mer size = 35 bp) (Fig. 1). The resulting contigs were
blasted against the P. glauca coding sequences [30] which
were originally used to design the probe sequences. Only
P. abies contigs matching P. glauca transcripts with a
minimum threshold (95% of sequence identity and blastn
e-value <1e− 5) and an average coverage between 25 and
800 were retained for subsequent steps.

Reference-guided alignment and SNP detection
Two protocols were used for the alignment of pool reads
and the SNP detection, producing two SNP datasets over
the reference-guided alignment (Fig. 1). In the first proto-
col, reads were aligned with BWA (Burrows-Wheeler
Alignment) using a minimum seed length of 33 bp, a mis-
match penalty of 10 and a gap open penalty of 100. SNPs
were detected with PLATYPUS using the following cri-
teria: minReads = 25, maxVariants = 2, minMapQual = 10,
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minBaseQual = 10, minGoodQualBases = 10, badReads-
Threshold = 10, rmsmqThreshold = 20 and hapScore-
Threshold = 15. The second protocol used the GS
REFERENCE MAPPER software (version 2.8; 454 Life
Science) for both alignment and SNP detection with the
following parameters: minimum read length = 40 bp, seed
step = 12 bp, seed length = 16 bp, seed count = 3 bp and
99% of minimum overlap identity.
Lastly, two Python scripts (https://www.python.org/)

were developed to identify and retain SNPs common to
both datasets, and to extract the 100 bases upstream and
downstream of each SNP (or shorter when the SNP was
too close to a contig end). Only SNPs satisfying the fol-
lowing in-house criteria were included in the SNP re-
source: MQ (root-mean-square mapping quality) ≥ 20,
MMLQ (median minimum base quality for bases around
variant) ≥ 10, QD (quality by depth) ≥ 10, PP (posterior
probability) ≥ 20, SbPval (binomial P-value for strand
bias test) ≥ 0.01, hap score ≥ 15, max GOF (max allowed
value for goodness-of-fit test) ≥ 20, SC (sequence con-
text) ≥ 0.95, and a minimum of two reads for the alter-
native allele. Thus, singleton SNPs were de facto
excluded from the resource in order to minimize the rate
of false positives. Furthermore, only bi-allelic SNPs were
retained since they are abundant and easier to genotype
with common high-throughput genotyping platforms,
and given that multi-allelic SNPs are more likely to re-
sult from variation at paralogous loci [40, 87].

Genotyping assay
An Infinium iSelect SNP array (Illumina, San Diego,
CA) was developed to estimate the true positive rate for
a subset of newly identified SNPs, and to genotype trees
for future population genomic applications. The array
consisted of 6000 beads, with use of type II SNPs (one
bead per SNP) [88] and one SNP per gene to maximize
the number of SNPs and gene loci on the chip. Two
subsets of SNPs were submitted for manufacturing: 5907
newly predicted SNPs and 93 control SNPs previously
genotyped successfully with two GoldenGate (Illumina)
SNP arrays [5, 17].
Newly predicted SNPs that were included in the array

had to satisfy the following criteria: i) no SNP or indel
within the 50 bp upstream or downstream of the pre-
dicted SNP (to ensure a good match of the Infinium
probe); ii) a minimum distance of 20 bp from both con-
tig ends (for possible reuse with other genotyping tech-
nologies; iii) and an Illumina functionality score ≥ 0.60.
To assess the true positive rate of newly predicted

SNPs, a set of 1130 full-sib progenies resulting from
various crosses among 35 parents of the P. abies breed-
ing population from the Ministère des Forêts, de la
Faune et des Parcs of Québec were genotyped with the
SNP array. Two samples were used as positive controls

and replicated on each 96-well plate to evaluate
intra-assay genotyping reproducibility. DNA was isolated
from needles and terminal buds by using the DNeasy 96
Plant Kit of Qiagen (Mississauga, Ontario) and following
the manufacturer’s instructions.
The SNP genotyping assay was manufactured and car-

ried out at the Génome Québec Innovation Centre
(team of Daniel Vincent and François Bacot at McGill
University, Montréal, Canada) according to Illumina’s
protocols. A minimum of 80 ng of template gDNA per
sample was used. Genotype calling was conducted using
the GENOME STUDIO 2.0 software (Illumina). All
SNPs with a GenTrain score ≥ 0.13 and a call rate ≥ 80%
(average call rate = 99.3%) were visually inspected in
GENOME STUDIO, and manually cured to reject
monomorphic and non-segregating polymorphisms. In
addition, polymorphisms with large excess of heterozy-
gotes (Fe ≥ 0.80) were discarded as they usually result
from probes annealing to paralogous loci.

SNP abundance
SNP abundance was estimated as the number of SNPs
observed within a contig, divided by contig length. Be-
cause this diversity parameter was correlated with contig
depth (Pearson’s correlation r = 0.30), we estimated the
beta (β) parameter developed by Novaes et al. [89],
which corrects for sequencing depth using the following
formula:

β ¼ S þ 1ð Þ=L½ �=
XD−1

i¼1
1=ið Þ

h i
ð1Þ

where S is the number of SNPs detected in the contig, L is
the contig sequence length and D is the average depth for
the contig (i.e. the average number of reads covering a nu-
cleotide position). Given that the correlation between β
and contig depth was low with r = 0.13, this parameter
was deemed appropriate to compare SNP abundance
across genes. When a gene was composed of multiple
contigs, a weighted average β based on sequence length
was computed for the gene (Additional file 5).

Gene annotation
The P. abies contigs were paired with the P. glauca
coding sequences [30] from which the probes for exome
capture were designed, and with the sequences of
predicted genes based on the P. abies whole-genome
sequence [2]. Gene annotations, namely GO accessions,
gene families, orphans (i.e. gene not included in any fam-
ily), and conifer-specific genes, were then inferred from
homologous gene sequences (minimum sequence identity
level of 98%) using the ConGenIE public database (avail-
able at http://www.congenie.org) (Additional file 5).
We performed enrichment tests between the 10% most

SNPed genes (those with the highest β values) and the
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remaining genes for the following functional categories:
GO terms, gene families, orphans (i.e. genes with un-
known gene families), and conifer-specific genes.
We used the package topGO [90], available in R

BIOCONDUCTOR [91], to assign genes to GO terms,
and to test whether the 10% most SNPed genes were
significantly enriched in some GO terms. The initial
gene set consisted of the 5735 genes, among which
4342 genes were associated with a molecular function,
4302 genes were associated with a biological process,
and 3572 genes were associated with a cellular compo-
nent. Methods implemented in topGO compute the
significance of a GO term enrichment based on its
neighborhood [90]. We applied the weight01 method,
which is a mixture of the elim and the weight methods,
both taking into account the GO hierarchy [90]. GO terms
with less than five genes were excluded (nodesize = 5),
and Fisher’s exact tests were applied to assess statistical
significance. Non-adjusted p-values were used, as com-
monly done in similar studies (e.g. [92]) and as recom-
mended in the topGO user guide (available at http://
bioconductor.org/packages/3.7/bioc/vignettes/topGO/inst/
doc/topGO.pdf).
We then assessed whether some gene families were

over-represented within the 10% most SNPed genes, rela-
tive to the remaining dataset. The 69 gene families repre-
sented by at least two genes in the 10% most SNPed genes
were tested for enrichment using Fisher’s exact tests.
These tests were also used to determine if orphan genes
and conifer-specific genes were over-represented within
the 10% most SNPed genes.

Additional files

Additional file 1: Description of the Picea abies predicted SNP resource
including quality parameters. (XLSX 13017 kb)

Additional file 2: Description of Picea abies SNPs successfully
genotyped with the Infinium SNP array. (XLSX 1081 kb)

Additional file 3: The 30 most SNPed genes among the 16,516 Picea
abies genes analysed. (XLSX 15 kb)

Additional file 4: The subgraph representing the most significant GO
terms found by the weighted model produced by TopGO for scoring GO
terms for enrichment. Boxes indicate significant terms and box color
represents relative significance, ranging from dark red (most significant)
to light yellow (least significant). Each shape provides GO term accession,
definition, the raw p-value and observed frequency. (ZIP 136 kb)

Additional file 5: Annotation of the 16,516 Picea abies genes according
to GCAT and ConGenIE database with GO accessions. (XLSX 1731 kb)
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